17,389 research outputs found
Flavor SU(3) analysis of charmless B->PP decays
We perform a global fits to charmless decays which independently
constrain the vertex of the unitarity triangle. The
fitted amplitudes and phase are used to predict the branching ratios and CP
asymmetries of all decay modes, including those of the system. Different
schemes of SU(3) breaking in decay amplitude sizes are analyzed. The
possibility of having a new physics contribution to decays is also
discussed.Comment: 3 pages, 2 figs. Talk given at EPS-HEP07 To appear in the
proceedings, Reference adde
The Revolving Door: A Report on U.S. Hospital Readmissions
The U.S. health care system suffers from a chronic malady -- the revolving door syndrome at its hospitals. It is so bad that the federal government says one in five elderly patients is back in the hospital within 30 days of leaving.Some return trips are predictable elements of a treatment plan. Others are unplanned but difficult to prevent: patients go home, new and unexpected problems arise, and they require an immediate trip back to the hospital.But many of these readmissions can and should be prevented. They are the result of a fragmented system of care that too often leaves discharged patients to their own devices, unable to follow instructions they didn't understand, and not taking medications or getting the necessary follow-up care.The federal government has pegged the cost of readmissions for Medicare patients alone at 17 billion of it pays for return trips that need not happen if patients get the right care. This is one reason the Centers for Medicare & Medicaid Services has identified avoidable readmissions as one of the leading problems facing the U.S. health care system and now penalizes hospitals with high rates of readmissions for their heart failure, heart attack, and pneumonia patients. This report is being released in conjunction with the Robert Wood John Foundation's Care About Your Care initiative, which is devoted to improving care transitions when people leave the hospital. It looks at the issue of readmissions in two ways: by the numbers and through the eyes of the people who live them
U-Spin Tests of the Standard Model and New Physics
Within the standard model, a relation involving branching ratios and direct
CP asymmetries holds for the B-decay pairs that are related by U-spin. The
violation of this relation indicates new physics (NP). In this paper, we assume
that the NP affects only the Delta S = 1 decays, and show that the NP operators
are generally the same as those appearing in B -> pi K decays. The fit to the
latest B -> pi K data shows that only one NP operator is sizeable. As a
consequence, the relation is expected to be violated for only one decay pair:
Bd -> K0 pi0 and Bs -> Kbar0 pi0.Comment: 12 pages, latex, no figures. References changed to follow MPL
guidelines; info added about U-spin breaking and small NP strong phases;
discussion added about final-state pi-K rescattering; analysis and
conclusions unaltere
Hybrid functionals within the all-electron FLAPW method: implementation and applications of PBE0
We present an efficient implementation of the PBE0 hybrid functional within
the full-potential linearized augmented-plane-wave (FLAPW) method. The
Hartree-Fock exchange term, which is a central ingredient of hybrid
functionals, gives rise to a computationally expensive nonlocal potential in
the one-particle Schroedinger equation. The matrix elements of this exchange
potential are calculated with the help of an auxiliary basis that is
constructed from products of FLAPW basis functions. By representing the Coulomb
interaction in this basis the nonlocal exchange term becomes a Brillouin-zone
(BZ) sum over vector-matrix-vector products. We show that the Coulomb matrix
can be made sparse by a suitable unitary transformation of the auxiliary basis,
which accelerates the computation of the vector-matrix-vector products
considerably. Additionally, we exploit spatial and time-reversal symmetry to
identify the nonvanishing exchange matrix elements in advance and to restrict
the k summations for the nonlocal potential to an irreducible set of k points.
Favorable convergence of the self-consistent-field cycle is achieved by a
nested density-only and density-matrix iteration scheme. We discuss the
convergence with respect to the parameters of our numerical scheme and show
results for a variety of semiconductors and insulators, including oxide
materials, where the PBE0 hybrid functional improves the band gaps and the
description of localized states in comparison with the PBE functional.
Furthermore, we find that in contrast to conventional local
exchange-correlation functionals ferromagnetic EuO is correctly predicted to be
a semiconductor.Comment: 15 pages, 6 figures, 2 table
Cosmological and Solar-System Tests of f(R) Modified Gravity
We investigate the cosmological and the local tests of the f(R) theory of
modified gravity via the observations of (1) the cosmic expansion and (2) the
cosmic structures and via (3) the solar-system experiments. To fit the possible
cosmic expansion histories under consideration, for each of them we reconstruct
f(R), known as "designer f(R)". We then test the designer f(R) via the
cosmic-structure constraints on the metric perturbation ratio Psi/Phi and the
effective gravitational coupling G_eff and via the solar-system constraints on
the Brans-Dicke theory with the chameleon mechanism. We find that among the
designer f(R) models specified by the CPL effective equation of state w_eff,
only the model closely mimicking general relativity with a cosmological
constant (LambdaCDM) can survive all the tests. Accordingly, these tests rule
out the frequently studied "w_eff = -1" designer f(R) models which are distinct
in cosmic structures from LambdaCDM. When considering only the cosmological
tests, we find that the surviving designer f(R) models, although exist for a
variety of w_eff, entail fine-tuning.Comment: 22 pages, 9 figures, LaTe
Implications of the X-ray Variability for the Mass of MCG-6-30-15
The bright Seyfert 1 galaxy \mcg shows large variability on a variety of time
scales. We study the \aproxlt 3 day time scale variability using a set of
simultaneous archival observations that were obtained from \rxte and the {\it
Advanced Satellite for Cosmology and Astrophysics} (\asca). The \rxte\
observations span nearly sec and indicate that the X-ray Fourier Power
Spectral Density has an rms variability of 16%, is flat from approximately
10^{-6} - 10^{-5} Hz, and then steepens into a power law
with \alpha\aproxgt 1. A further steepening to occurs
between 10^{-4}-10^{-3} Hz. The shape and rms amplitude are comparable to what
has been observed in \ngc and \cyg, albeit with break frequencies that differ
by a factor of 10^{-2} and 10^{4}, respectively. If the break frequencies are
indicative of the central black hole mass, then this mass may be as low as
. An upper limit of ks for the relative lag
between the 0.5-2 keV \asca band compared to the 8-15 keV \rxte band was also
found. Again by analogy with \ngc and \cyg, this limit is consistent with a
relatively low central black hole mass.Comment: 5 pages, 3 figures, LaTeX, uses emulateapj.sty and apjfonts.sty,
revised version, accepted for publication in ApJ Letter
Spin injection from perpendicular magnetized ferromagnetic -MnGa into (Al,Ga)As heterostructures
Electrical spin injection from ferromagnetic -MnGa into an (Al,Ga)As
p-i-n light emitting diode (LED) is demonstrated. The -MnGa layers show
strong perpendicular magnetocrystalline anisotropy, enabling detection of spin
injection at remanence without an applied magnetic field. The bias and
temperature dependence of the spin injection are found to be qualitatively
similar to Fe-based spin LED devices. A Hanle effect is observed and
demonstrates complete depolarization of spins in the semiconductor in a
transverse magnetic field.Comment: 4 pages, 3 figure
- …
