16,562 research outputs found
GW quasiparticle calculations with spin-orbit coupling for the light actinides
We report on the importance of GW self-energy corrections for the electronic
structure of light actinides in the weak-to-intermediate coupling regime. Our
study is based on calculations of the band structure and total density of
states of Np, U, and Pu using a one-shot GW approximation that includes
spin-orbit coupling within a full potential LAPW framework. We also present RPA
screened effective Coulomb interactions for the f-electron orbitals for
different lattice constants, and show that there is an increased contribution
from electron-electron correlation in these systems for expanded lattices. We
find a significant amount of electronic correlation in these highly localized
electronic systems.Comment: Accepted and to appear in Phys. Rev.
Structural Control of Metamaterial Oscillator Strength and Electric Field Enhancement at Terahertz Frequencies
The design of artificial nonlinear materials requires control over the
internal resonant charge densities and local electric field distributions. We
present a MM design with a structurally controllable oscillator strength and
local electric field enhancement at terahertz frequencies. The MM consists of a
split ring resonator (SRR) array stacked above an array of nonresonant closed
conducting rings. An in-plane, lateral shift of a half unit cell between the
SRR and closed ring arrays results in a decrease of the MM oscillator strength
by a factor of 4 and a 40% change in the amplitude of the resonant electric
field enhancement in the SRR capacitive gap. We use terahertz time-domain
spectroscopy and numerical simulations to confirm our results and we propose a
qualitative inductive coupling model to explain the observed electromagnetic
reponse.Comment: 11 pages, 5 figure
Spin Hall Effect in Atoms
We propose an optical means to realize a spin hall effect (SHE) in neutral
atomic system by coupling the internal spin states of atoms to radiation. The
interaction between the external optical fields and the atoms creates effective
magnetic fields that act in opposite directions on "electrically" neutral atoms
with opposite spin polarizations. This effect leads to a Landau level structure
for each spin orientation in direct analogy with the familiar SHE in
semiconductors. The conservation and topological properties of the spin
current, and the creation of a pure spin current are discussed.Comment: 4 pages, 2 figure; Final versio
Continuous quantum phase transition in a Kondo lattice model
We study the magnetic quantum phase transition in an anisotropic Kondo
lattice model. The dynamical competition between the RKKY and Kondo
interactions is treated using an extended dynamic mean field theory (EDMFT)
appropriate for both the antiferromagnetic and paramagnetic phases. A quantum
Monte Carlo approach is used, which is able to reach very low temperatures, of
the order of 1% of the bare Kondo scale. We find that the finite-temperature
magnetic transition, which occurs for sufficiently large RKKY interactions, is
first order. The extrapolated zero-temperature magnetic transition, on the
other hand, is continuous and locally critical.Comment: 4 pages, 4 figures; updated, to appear in PR
Coulomb correlation in presence of spin-orbit coupling: application to plutonium
Attempts to go beyond the local density approximation (LDA) of Density
Functional Theory (DFT) have been increasingly based on the incorporation of
more realistic Coulomb interactions. In their earliest implementations, methods
like LDA+, LDA + DMFT (Dynamical Mean Field Theory), and LDA+Gutzwiller used
a simple model interaction . In this article we generalize the solution of
the full Coulomb matrix involving to parameters, which is
usually presented in terms of an basis, into a basis of
the total angular momentum, where we also include spin-orbit coupling; this
type of theory is needed for a reliable description of -state elements like
plutonium, which we use as an example of our theory. Close attention will be
paid to spin-flip terms, which are important in multiplet theory but that have
been usually neglected in these kinds of studies. We find that, in a
density-density approximation, the basis results provide a very good
approximation to the full Coulomb matrix result, in contrast to the much less
accurate results for the more conventional basis
Terahertz metamaterials on free-standing highly-flexible polyimide substrates
We have fabricated resonant terahertz metamaterials on free standing
polyimide substrates. The low-loss polyimide substrates can be as thin as 5.5
micron yielding robust large-area metamaterials which are easily wrapped into
cylinders with a radius of a few millimeters. Our results provide a path
forward for creating multi-layer non-planar metamaterials at terahertz
frequencies.Comment: 4 pages, higher resolution figures available upon reques
Black Holes and Large Order Quantum Geometry
We study five-dimensional black holes obtained by compactifying M theory on
Calabi-Yau threefolds. Recent progress in solving topological string theory on
compact, one-parameter models allows us to test numerically various conjectures
about these black holes. We give convincing evidence that a microscopic
description based on Gopakumar-Vafa invariants accounts correctly for their
macroscopic entropy, and we check that highly nontrivial cancellations -which
seem necessary to resolve the so-called entropy enigma in the OSV conjecture-
do in fact occur. We also study analytically small 5d black holes obtained by
wrapping M2 branes in the fiber of K3 fibrations. By using heterotic/type II
duality we obtain exact formulae for the microscopic degeneracies in various
geometries, and we compute their asymptotic expansion for large charges.Comment: 42 pages, 20 eps figures, small correction
Magnetic transitions and magnetodielectric effect in the antiferromagnet SrNdFeO
We investigated the magnetic phase diagram of single crystals of
SrNdFeO by measuring the magnetic properties, the specific heat and the
dielectric permittivity. The system has two magnetically active ions, Fe
and Nd. The Fe spins are antiferromagnetically ordered below 360
K with the moments lying in the ab-plane, and undergo a reorientation
transition at about 35-37 K to an antiferromagnetic order with the moments
along the c-axis. A short-range, antiferromagnetic ordering of Nd along
the c-axis was attributed to the reorientation of Fe followed by a
long-range ordering at lower temperature [S. Oyama {\it et al.} J. Phys.:
Condens. Matter. {\bf 16}, 1823 (2004)]. At low temperatures and magnetic
fields above 8 T, the Nd moments are completely spin-polarized. The
dielectric permittivity also shows anomalies associated with spin configuration
changes, indicating that this compound has considerable coupling between spin
and lattice. A possible magnetic structure is proposed to explain the results.Comment: 8 pages, 10 figures, submitted to PR
Classification of multipartite entanglement containing infinitely many kinds of states
We give a further investigation of the range criterion and Low-to-High Rank
Generating Mode (LHRGM) introduced in \cite{Chen}, which can be used for the
classification of states under reversible local filtering
operations. By using of these techniques, we entirely classify the family of
states, which actually contains infinitely many kinds of
states. The classifications of true entanglement of
and systems are briefly listed respectively.Comment: 11 pages, revte
- …
