34,353 research outputs found

    Intrinsic adaptive mesh techniques

    Get PDF
    An alternating direction adaptive grid movement code was developed and a thesis adaptive angular meshes was directed. The alternating direction code was also established on the NASA Langley computer system and is available for use there. In essence, grid points are moved on an abstract surface above physical space by means of alternating coordinate directions. The abstract surface is formed with the salient solution properties if they can be extracted by a priori physical reasoning; or otherwise, in the absence of such reasoning, by the use of error estimates in some chosen norm. Upon formulation, all important driving properties for adaptive purposes are consolidated into one object - the abstract surface. At a basic level, a uniform distribution of surface points is equivalent to gradient resolution. This arises from a projection back down into physical space. At a higher level, a more accurate view of the abstract surface is obtained when changes in surface direction are also resolved. The appropriate measure for direction changes is normal curvature. It is defined as the rate of change of surface tangent planes as a surface coordinate curve is transversed in uniform increments of arc length

    Pressure-Temperature Phase Diagram of Multiferroic Ni3V2O8Ni_3V_2O_8

    Full text link
    The pressure-temperature phase diagram of multiferroic Ni3V2O8Ni_3V_2O_8 is investigated for hydrostatic pressures up to 2 GPa. The stability range of the ferroelectric phase associated with the incommensurate helical spin order is reduced by pressure and ferroelectricity is completely suppressed at the critical pressure of 1.64 GPa at 6.2 K. Thermal expansion measurements at ambient pressure show strong step-like anomalies of the lattice parameters associated with the lock-in transition into the commensurate paraelectric phase. The expansion anomalies are highly anisotropic, the related volume change is consistent with the high-pressure phase diagram

    A New Model for Family Resource Allocation Among Siblings: Competition, Forbearance, and Support

    Get PDF
    Previous research analyzing within-family education resource allocation usually employs the sibship and birth order of a child as explanatory variables. We argue in this paper that to correctly characterize the resource competition and support scenario within a family, one should identify the Sex, Seniority, and most importantly Age Difference of a child’s sibling structure, and hence we call our analysis a SSAD model of family resource allocation. We show that siblings with different combinations of SSAD may play distinct roles in family resource allocation. Ignoring such facts may distort the significance and/or direction of the prediction. We support our analysis with empirical evidence using data from Taiwan.

    Loss of purity by wave packet scattering at low energies

    Full text link
    We study the quantum entanglement produced by a head-on collision between two gaussian wave packets in three-dimensional space. By deriving the two-particle wave function modified by s-wave scattering amplitudes, we obtain an approximate analytic expression of the purity of an individual particle. The loss of purity provides an indicator of the degree of entanglement. In the case the wave packets are narrow in momentum space, we show that the loss of purity is solely controlled by the ratio of the scattering cross section to the transverse area of the wave packets.Comment: 7 pages, 1 figur

    S-wave quantum entanglement in a harmonic trap

    Full text link
    We analyze the quantum entanglement between two interacting atoms trapped in a spherical harmonic potential. At ultra-cold temperature, ground state entanglement is generated by the dominated s-wave interaction. Based on a regularized pseudo-potential Hamiltonian, we examine the quantum entanglement by performing the Schmidt decomposition of low-energy eigenfunctions. We indicate how the atoms are paired and quantify the entanglement as a function of a modified s-wave scattering length inside the trap.Comment: 10 pages, 5 figures, to be apear in PR

    Superconductivity in pure and electron doped MgB2: Transport properties and pressure effects

    Full text link
    The normal state and superconducting properties of MgB2 and Mg1-xAlxB2 are discussed based on structural, transport, and high pressure experiments. The positive Seebeck coefficient and its linear temperature dependence for Tc<T<160 K provide evidence that the low-temperature transport in MgB2 is due to hole-like metallic carriers. Structural and transport data show the important role of defects as indicated by the correlation of Tc, the residual resistance ratio, and the microstrain extracted from x-ray spectra. The decrease of Tc with hydrostatic pressure is well explained by the strong-coupling BCS theory. The large scatter of the pressure coefficients of Tc for different MgB2 samples, however, cannot be explained within this theory. We speculate that pressure may increase the defect density, particularly in samples with large initial defect concentration.Comment: Presented at NATO Advanced Research Workshop "New Trends in Superconductivity", Yalta (Ukraine) 16-20 September, 200

    Thermodynamic evidence for pressure-induced bulk superconductivity in the Fe-As pnictide superconductor CaFe2As2

    Full text link
    We report specific-heat and resistivity experiments performed in parallel in a Bridgman-type of pressure cell in order to investigate the nature of pressure-induced superconductivity in the iron pnictide compound CaFe2As2. The presence of a pronounced specific-heat anomaly at Tc reveals a bulk nature of the superconducting state. The thermodynamic transition temperature differs dramatically from the onset of the resistive transition. Our data indicates that superconductivity occurs in the vicinity of a crystallographic phase transition. We discuss the discrepancy between the two methods as caused by strain-induced superconducting precursors formed above the bulk thermodynamic transition due to the vicinity of the structural instability
    • …
    corecore