19 research outputs found

    Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles

    No full text
    Engineered nano-sized Cu oxide particles are extensively used in diverse applications. Because aquatic environments are the ultimate "sink" for all contaminants, it is expected that nanoparticles (NP) will follow the same fate. In this study, two marine invertebrates Scrobicularia plana and Hediste diversicolor were chosen as ecotoxicological models. The aim was to evaluate behavioural (burrowing kinetics, feeding rate) and biochemical (biomarkers) responses of S. plana and H. diversicolor exposed in the laboratory to Cu (10 mu g L(-1)) added in natural seawater either in the form of engineered nanoparticles (NPs) of CuO or as dissolved Cu in 2% HNO(3). Exposure was characterized by considering (i) the physico-chemical fate of NP (ii) the fraction of labile Cu in experimental media and (iii) Cu bioaccumulation. Results showed high aggregation of CuO NPs in seawater and no additional bioavailable Cu concentrations. Behavioural impairments were observed in S. plana exposed to CuO NPs or soluble Cu whereas in H. diversicolor, only the exposure to soluble Cu led to a burrowing decrease. No obvious neurotoxicity effects were revealed since in both species, no changes in cholinesterasic activity occurred in response to both forms of Cu exposure. Biomarkers of oxidative-stress catalase and glutathione-S-transferase were enhanced in both species whereas superoxide dismutase was increased only in S. plana exposed to CuO NPs. Metallothionein-like protein was increased in bivalves exposed to both forms of Cu. Since, no detectable release of soluble Cu from CuO NPs occurred during the time of experiment, ecotoxicity effects seem to be related to CuO NPs themselves. (C) 2011 Elsevier Ltd. All rights reserved

    A review of nanoparticle functionality and toxicity on the central nervous system

    Get PDF
    Original article can be found at : http://rsif.royalsocietypublishing.org/ Copyright The Royal Society [Full text of this article is not available in the UHRA]Although nanoparticles have tremendous potential for a host of applications, their adverse effects on living cells have raised serious concerns recently for their use in the healthcare and consumer sectors. As regards the central nervous system (CNS), research data on nanoparticle interaction with neurons has provided evidence of both negative and positive effects. Maximal application dosage of nanoparticles in materials to provide applications such as antibacterial and antiviral functions is approximately 0.1-1.0 wt%. This concentration can be converted into a liquid phase release rate (leaching rate) depending upon the host or base materials used. For example, nanoparticulate silver (Ag) or copper oxide (CuO)-filled epoxy resin demonstrates much reduced release of the metal ions (Ag+ or Cu2+) into their surrounding environment unless they are mechanically removed or aggravated. Subsequent to leaching effects and entry into living systems, nanoparticles can also cross through many other barriers, such as skin and the blood-brain barrier (BBB), and may also reach bodily organs. In such cases, their concentration or dosage in body fluids is considered to be well below the maximum drug toxicity test limit (10(-5) g ml(-1)) as determined in artificial cerebrospinal solution. As this is a rapidly evolving area and the use of such materials will continue to mature, so will their exposure to members of society. Hence, neurologists have equal interests in nanoparticle effects (positive functionality and negative toxicity) on human neuronal cells within the CNS, where the current research in this field will be highlighted and reviewed.Peer reviewe

    Effects of tungsten addition on the microstructure and mechanical properties of microalloyed forging steels

    Get PDF
    In the current study, the effects of tungsten (W) addition on the microstructure, hardness, and room/low [223 K and 173 K (-50 C and -100 C)] temperature tensile properties of microalloyed forging steels were systematically investigated. Four kinds of steel specimens were produced by varying the W additions (0, 0.1, 0.5, and 1 wt pct). The microstructure showed that the addition of W does not have any noticeable effect on the amount of precipitates. The precipitates in W-containing steels were all rich in W, and the W concentration in the precipitates increased with the increasing W content. The mean sizes of both austenite grains and precipitates decreased with the increasing W content. When the W content was equal to or less than 0.5 pct, the addition of W favored the formation of allotriomorphic ferrite, which subsequently promoted the development of acicular ferrite in the microalloyed forging steels. The results of mechanical tests indicated that W plays an important role in increasing the hardness and tensile strength. When the testing temperature was decreased, the tensile strength showed an increasing trend. Both the yield strength and the ultimate tensile strength obeyed an Arrhenius type of relation with respect to temperature. When the temperature was decreased from 223 K to 173 K (from -50 C to -100 C), a ductile-to-brittle transition (DBT) of the specimen with 1 pct W occurred. The addition of W favored a higher DBT temperature. From the microstructural and mechanical test results, it is demonstrated that the addition of 0.5 pct W results in the best combination of excellent room/low-temperature tensile strength and ductility. 2013 The Minerals, Metals & Materials Society and ASM International
    corecore