9,145 research outputs found
Recommended from our members
Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis.
Osteoarthritis (OA), long considered a primary disorder of articular cartilage, is commonly associated with subchondral bone sclerosis. However, the cellular mechanisms responsible for changes to subchondral bone in OA, and the extent to which these changes are drivers of or a secondary reaction to cartilage degeneration, remain unclear. In knee joints from human patients with end-stage OA, we found evidence of profound defects in osteocyte function. Suppression of osteocyte perilacunar/canalicular remodeling (PLR) was most severe in the medial compartment of OA subchondral bone, with lower protease expression, diminished canalicular networks, and disorganized and hypermineralized extracellular matrix. As a step toward evaluating the causality of PLR suppression in OA, we ablated the PLR enzyme MMP13 in osteocytes while leaving chondrocytic MMP13 intact, using Cre recombinase driven by the 9.6-kb DMP1 promoter. Not only did osteocytic MMP13 deficiency suppress PLR in cortical and subchondral bone, but it also compromised cartilage. Even in the absence of injury, osteocytic MMP13 deficiency was sufficient to reduce cartilage proteoglycan content, change chondrocyte production of collagen II, aggrecan, and MMP13, and increase the incidence of cartilage lesions, consistent with early OA. Thus, in humans and mice, defects in PLR coincide with cartilage defects. Osteocyte-derived MMP13 emerges as a critical regulator of cartilage homeostasis, likely via its effects on PLR. Together, these findings implicate osteocytes in bone-cartilage crosstalk in the joint and suggest a causal role for suppressed perilacunar/canalicular remodeling in osteoarthritis
Photoluminescence and photoluminescence excitation studies of lateral size effects in Zn_{1-x}Mn_xSe/ZnSe quantum disc samples of different radii
Quantum disc structures (with diameters of 200 nm and 100 nm) were prepared
from a Zn_{0.72}Mn_{0.28}Se/ZnSe single quantum well structure by electron beam
lithography followed by an etching procedure which combined dry and wet etching
techniques. The quantum disc structures and the parent structure were studied
by photoluminescence and photoluminescence excitation spectroscopy. For the
light-hole excitons in the quantum well region, shifts of the energy positions
are observed following fabrication of the discs, confirming that strain
relaxation occurs in the pillars. The light-hole exciton lines also sharpen
following disc fabrication: this is due to an interplay between strain effects
(related to dislocations) and the lateral size of the discs. A further
consequence of the small lateral sizes of the discs is that the intensity of
the donor-bound exciton emission from the disc is found to decrease with the
disc radius. These size-related effects occur before the disc radius is reduced
to dimensions necessary for lateral quantum confinement to occur but will
remain important when the discs are made small enough to be considered as
quantum dots.Comment: LaTeX2e, 13 pages, 6 figures (epsfig
Evolutionary multi-stage financial scenario tree generation
Multi-stage financial decision optimization under uncertainty depends on a
careful numerical approximation of the underlying stochastic process, which
describes the future returns of the selected assets or asset categories.
Various approaches towards an optimal generation of discrete-time,
discrete-state approximations (represented as scenario trees) have been
suggested in the literature. In this paper, a new evolutionary algorithm to
create scenario trees for multi-stage financial optimization models will be
presented. Numerical results and implementation details conclude the paper
The hyperon mean free paths in the relativistic mean field
The - and -hyperon mean free paths in nuclei are firstly
calculated in the relativistic mean field (RMF) theory. The real parts of the
optical potential are derived from the RMF approach, while the imaginary parts
are obtained from those of nucleons with the relations:
and . With the
assumption, the depth of the imaginary potential for is
3.5 MeV, and for is 7 MeV at
low incident energy. We find that, the hyperon mean free path decreases with
the increase of the hyperon incident energies, from 200 MeV to 800 MeV; and in
the interior of the nuclei, the mean free path is about fm for
, and about fm for , depending on the hyperon
incident energy.Comment: 5 figures, 6 page
Foundations of self-consistent particle-rotor models and of self-consistent cranking models
The Kerman-Klein formulation of the equations of motion for a nuclear shell
model and its associated variational principle are reviewed briefly. It is then
applied to the derivation of the self-consistent particle-rotor model and of
the self-consistent cranking model, for both axially symmetric and triaxial
nuclei. Two derivations of the particle-rotor model are given. One of these is
of a form that lends itself to an expansion of the result in powers of the
ratio of single-particle angular momentum to collective angular momentum, that
is essentual to reach the cranking limit. The derivation also requires a
distinct, angular-momentum violating, step. The structure of the result implies
the possibility of tilted-axis cranking for the axial case and full
three-dimensional cranking for the triaxial one. The final equations remain
number conserving. In an appendix, the Kerman-Klein method is developed in more
detail, and the outlines of several algorithms for obtaining solutions of the
associated non-linear formalism are suggested.Comment: 29 page
Small damping approach in Fermi-liquid theory
The validity of small damping approximation (SDA) for the quasi-classical
description of the averaged properties of nuclei at high temperatures is
studied within the framework of collisional kinetic theory. The isoscalar
collective quadrupole vibrations in hot nuclei are considered. We show that the
extension of the SDA, by accounting for the damping of the distribution
function in the collision integral reduces the rate of variation
with temperature of the Fermi surface distortion effects. The damping of the
in the collision integral increases significantly the collisional
width of the giant quadrupole resonance (GQR) for small enough values of the
relaxation time. The temperature dependence of the eigenenergy of the GQR
becomes much more weaker than in the corresponding SDA case.Comment: 11 pages, 3 figure
A Bogomol`nyi equation for intersecting domain walls
We argue that the Wess-Zumino model with quartic superpotential admits static
solutions in which three domain walls intersect at a junction. We derive an
energy bound for such junctions and show that configurations saturating it
preserve 1/4 supersymmetry.Comment: 4 pages revtex. No figures. Revised version to appear in Physical
Review Letters includes discussion of the supersymmetry algebr
On the existence of supersolid helium-4 monolayer films
Extensive Monte Carlo simulations of helium-4 monolayer films adsorbed on
weak substrates have been carried out, aimed at ascertaining the possible
occurrence of a quasi-two-dimensional supersolid phase. Only crystalline films
not registered with underlying substrates are considered. Numerical results
yield strong evidence that helium-4 will not form a supersolid film on {any}
substrate strong enough to stabilize a crystalline layer. On weaker substrates,
continuous growth of a liquid film takes place
- …
