137,241 research outputs found
Surfing the Internet-of-Things: lightweight access and control of wireless sensor networks using industrial low power protocols
Internet-of-Things (IoT) is emerging to play an important role in the continued advancement of information and communication technologies. To accelerate industrial application developments, the use of web services for networking applications is seen as important in IoT communications. In this paper, we present a RESTful web service architecture for energy-constrained wireless sensor networks (WSNs) to enable remote data collection from sensor devices in WSN nodes. Specifically, we consider both IPv6 protocol support in WSN nodes as well as an integrated gateway solution to allow any Internet clients to access these nodes.We describe the implementation of a prototype system, which demonstrates the proposed RESTful approach to collect sensing data from a WSN. A performance evaluation is presented to illustrate the simplicity and efficiency of our proposed scheme
Phonon-phason coupling in icosahedral quasicrystals
From relaxation simulations of decoration-based quasicrystal structure models
using microscopically based interatomic pair potentials, we have calculated the
(usually neglected) phonon-phason coupling constant. Its sign is opposite for
the two alloys studied, i-AlMn and i-(Al,Cu)Li; a dimensionless measure of its
magnitude relative to the phonon and phason elastic constants is of order 1/10,
suggesting its effects are small but detectable. We also give a criterion for
when phonon-phason effects are noticeable in diffuse tails of Bragg peaks.Comment: 7 pages, LaTeX, uses Europhys Lett macros (included
Instabilities at [110] Surfaces of d_{x^2-y^2} Superconductors
We compare different scenarios for the low temperature splitting of the
zero-energy peak in the local density of states at (110) surfaces of
d_{x^2-y^2}-wave superconductors, observed by Covington et al.
(Phys.Rev.Lett.79 (1997), 277). Using a tight binding model in the
Bogolyubov-de Gennes treatment we find a surface phase transition towards a
time-reversal symmetry breaking surface state carrying spontaneous currents and
an s+id-wave state. Alternatively, we show that electron correlation leads to a
surface phase transition towards a magnetic state corresponding to a local spin
density wave state.Comment: 4 pages, 5 figure
Spin Hall effects for cold atoms in a light induced gauge potential
We propose an experimental scheme to observe spin Hall effects with cold
atoms in a light induced gauge potential. Under an appropriate configuration,
the cold atoms moving in a spatially varying laser field experience an
effective spin-dependent gauge potential. Through numerical simulation, we
demonstrate that such a gauge field leads to observable spin Hall currents
under realistic conditions. We also discuss the quantum spin Hall state in an
optical lattice.Comment: 4 pages; The published versio
Trapped ion quantum computation with transverse phonon modes
We propose a scheme to implement quantum gates on any pair of trapped ions
immersed in a large linear crystal, using interaction mediated by the
transverse phonon modes. Compared with the conventional approaches based on the
longitudinal phonon modes, this scheme is much less sensitive to ion heating
and thermal motion outside of the Lamb-Dicke limit thanks to the stronger
confinement in the transverse direction. The cost for such a gain is only a
moderate increase of the laser power to achieve the same gate speed. We also
show how to realize arbitrary-speed quantum gates with transverse phonon modes
based on simple shaping of the laser pulses.Comment: 5 page
Recommended from our members
Weathering microenvironments on feldspar surfaces: implications for understanding fluid-mineral reactions in soils
The mechanisms by which coatings develop on weathered grain surfaces, and their potential impact on rates of fluid-mineral interaction, have been investigated by examining feldspars from a 1.1 ky old soil in the Glen Feshie chronosequence, Scottish highlands. Using the focused ion beam technique, electron-transparent foils for characterization by transmission electron microscopy were cut from selected parts of grain surfaces. Some parts were bare whereas others had accumulations, a few micrometres thick, of weathering products, often mixed with mineral and microbial debris. Feldspar exposed at bare grain surfaces is crystalline throughout and so there is no evidence for the presence of the amorphous 'leached layers' that typically form in acid-dissolution experiments and have been described from some natural weathering contexts. The weathering products comprise sub-μm thick crystallites of an Fe-K aluminosilicate, probably smectite, that have grown within an amorphous and probably organic-rich matrix. There is also evidence for crystallization of clays having been mediated by fungal hyphae. Coatings formed within Glen Feshie soils after ∼1.1 ky are insufficiently continuous or impermeable to slow rates of fluid-feldspar reactions, but provide valuable insights into the complex weathering microenvironments on debris and microbe-covered mineral surfaces
- …
