133,155 research outputs found

    Evidence for very strong electron-phonon coupling in YBa_{2}Cu_{3}O_{6}

    Full text link
    From the observed oxygen-isotope shift of the mid-infrared two-magnon absorption peak of YBa2_{2}Cu3_{3}O6_{6}, we evaluate the oxygen-isotope effect on the in-plane antiferromagnetic exchange energy JJ. The exchange energy JJ in YBa2_{2}Cu3_{3}O6_{6} is found to decrease by about 0.9% upon replacing 16^{16}O by 18^{18}O, which is slightly larger than that (0.6%) in La2_{2}CuO4_{4}. From the oxygen-isotope effects, we determine the lower limit of the polaron binding energy, which is about 1.7 eV for YBa2_{2}Cu3_{3}O6_{6} and 1.5 eV for La2_{2}CuO4_{4}, in quantitative agreement with angle-resolved photoemission data, optical conductivity data, and the parameter-free theoretical estimate. The large polaron binding energies in the insulating parent compounds suggest that electron-phonon coupling should also be strong in doped superconducting cuprates and may play an essential role in high-temperature superconductivity.Comment: 4 pages, 1 figur

    Many-core compiler fuzzing

    Get PDF
    We address the compiler correctness problem for many-core systems through novel applications of fuzz testing to OpenCL compilers. Focusing on two methods from prior work, random differential testing and testing via equivalence modulo inputs (EMI), we present several strategies for random generation of deterministic, communicating OpenCL kernels, and an injection mechanism that allows EMI testing to be applied to kernels that otherwise exhibit little or no dynamically-dead code. We use these methods to conduct a large, controlled testing campaign with respect to 21 OpenCL (device, compiler) configurations, covering a range of CPU, GPU, accelerator, FPGA and emulator implementations. Our study provides independent validation of claims in prior work related to the effectiveness of random differential testing and EMI testing, proposes novel methods for lifting these techniques to the many-core setting and reveals a significant number of OpenCL compiler bugs in commercial implementations

    Effects of ion irradiation on conductivity of CrSi_2 thin films

    Get PDF
    Electrical resistivity measurements are used to study damage in CrSi_2 thin films induced by Ne, Ar, or Xe ion irradiation over a fluence range of 10^(10)–10^(15) ions cm^(−2). Irradiation produces a factor of 5–12 increase in film conductivity at the higher fluences. The influence of defect generation and recombination is evident. We speculate that formation of a compound defect is a dominant factor enhancing film conductivity. A temperature dependence at low fluences is reported and tentatively identified

    Oxygen-isotope effect on the in-plane penetration depth in underdoped Y_{1-x}Pr_xBa_2Cu_3O_{7-delta} as revealed by muon-spin rotation

    Full text link
    The oxygen-isotope (^16O/^18O) effect (OIE) on the in-plane penetration depth λab(0)\lambda_{ab} (0) in underdoped Y_{1-x}Pr_xBa_2Cu_3O_{7-delta} was studied by muon-spin rotation. A pronounced OIE on λab−2(0)\lambda_{ab}^{-2}(0) was observed with a relative isotope shift of Δλab−2/λab−2\Delta\lambda^{-2}_{ab}/\lambda^{-2}_{ab}=-5(2)% for x =0.3 and -9(2)% for x=0.4. It arises mainly from the oxygen-mass dependence of the in-plane effective mass mab∗m_{ab}^{\ast}. The OIE exponents of T_{c} and of λab−2(0)\lambda_{ab}^{-2}(0) exhibit a relation that appears to be generic for cuprate superconductors.Comment: 4 pages, 4 eps figures, RevTex

    An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos

    Full text link
    Modern astronomical data on galaxy and cosmological scales have revealed powerfully the existence of certain dark sectors of fundamental physics, i.e., existence of particles and fields outside the standard models and inaccessible by current experiments. Various approaches are taken to modify/extend the standard models. Generic theories introduce multiple de-coupled fields A, B, C, each responsible for the effects of DM (cold supersymmetric particles), DE (Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C belong to decoupled sectors of physics. MOND-like MG and Cold DM are often taken as opposite frameworks, e.g. in the debate around the Bullet Cluster. Here we argue that these ad hoc divisions of sectors miss important clues from the data. The data actually suggest that the physics of all dark sectors is likely linked together by a self-interacting oscillating field, which governs a chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It is timely to consider an interdisciplinary approach across all semantic boundaries of dark sectors, treating the dark stress as one identity, hence accounts for several "coincidences" naturally.Comment: 12p, Proceedings to the 6-th Int. Conf. of Gravitation and Cosmology. Neutrino section expande
    • …
    corecore