42,859 research outputs found

    RF communication with implantable wireless device: effects of beating heart on performance of miniature antenna

    Get PDF
    The frequency response of an implantable antenna is key to the performance of a wireless implantable sensor. If the antenna detunes significantly, there are substantial power losses resulting in loss of accuracy. One reason for detuning is because of a change in the surrounding environment of an antenna. The pulsating anatomy of the human heart constitutes such a changing environment, so detuning is expected but this has not been quantified dynamically before. Four miniature implantable antennas are presented (two different geometries) along with which are placed within the heart of living swine the dynamic reflection coefficients. These antennas are designed to operate in the short range devices frequency band (863-870 MHz) and are compatible with a deeply implanted cardiovascular pressure sensor. The measurements recorded over 27 seconds capture the effects of the beating heart on the frequency tuning of the implantable antennas. When looked at in the time domain, these effects are clearly physiological and a combination of numerical study and posthumous autopsy proves this to be the case, while retrospective simulation confirms this hypothesis. The impact of pulsating anatomy on antenna design and the need for wideband implantable antennas is highlighted

    Kinematic approach to the mixed state geometric phase in nonunitary evolution

    Full text link
    A kinematic approach to the geometric phase for mixed quantal states in nonunitary evolution is proposed. This phase is manifestly gauge invariant and can be experimentally tested in interferometry. It leads to well-known results when the evolution is unitary.Comment: Minor changes; journal reference adde

    Observable estimation of entanglement of formation and quantum discord for bipartite mixed quantum states

    Full text link
    We present observable lower and upper bounds for the entanglement of formation (EOF) and quantum discord (QD), which facilitates estimates of EOF and QD for arbitrary experimental unknown states in finite-dimensional bipartite systems. These bounds can be easily obtained by a few experimental measurements on a twofold copy ϱϱ\varrho\otimes\varrho of the mixed states. Based on our results, we use the experimental measurement data of the real experiment given by Schmid \textit{et al.} [Phys. Rev. Lett. \textbf{101}, 260505 (2008)] to obtain the lower and upper bounds of EOF and QD for the experimental unknown state.Comment: 8 pages, 5 figure

    A Labelling Scheme for Higher Dimensional Simplex Equations

    Get PDF
    We present a succinct way of obtaining all possible higher dimensional generalization of Quantum Yang-Baxter Equation (QYBE). Using the scheme, we could generate the two popular three-simplex equations, namely: Zamolodchikov's tetrahedron equation (ZTE) and Frenkel and Moore equation (FME).Comment: To appear as a Letter to the Editor in J. Phys. A:Math and Ge

    GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm.

    Get PDF
    We present a GPU accelerated multi-functional spectral domain optical coherence tomography system at 1300 nm. The system is capable of real-time processing and display of every intensity image, comprised of 512 pixels by 2048 A-lines acquired at 20 frames per second. The update rate for all four images with size of 512 pixels by 2048 A-lines simultaneously (intensity, phase retardation, flow and en face view) is approximately 10 frames per second. Additionally, we report for the first time the characterization of phase retardation and diattenuation by a sample comprised of a stacked set of polarizing film and wave plate. The calculated optic axis orientation, phase retardation and diattenuation match well with expected values. The speed of each facet of the multi-functional OCT CPU-GPU hybrid acquisition system, intensity, phase retardation, and flow, were separately demonstrated by imaging a horseshoe crab lateral compound eye, a non-uniformly heated chicken muscle, and a microfluidic device. A mouse brain with thin skull preparation was imaged in vivo and demonstrated the capability of the system for live multi-functional OCT visualization

    Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed states

    Full text link
    Off-diagonal geometric phases have been developed in order to provide information of the geometry of paths that connect noninterfering quantal states. We propose a kinematic approach to off-diagonal geometric phases for pure and mixed states. We further extend the mixed state concept proposed in [Phys. Rev. Lett. {\bf 90}, 050403 (2003)] to degenerate density operators. The first and second order off-diagonal geometric phases are analyzed for unitarily evolving pairs of pseudopure states.Comment: New section IV, new figure, journal ref adde

    Geometric phase in open systems: beyond the Markov approximation and weak coupling limit

    Full text link
    Beyond the quantum Markov approximation and the weak coupling limit, we present a general theory to calculate the geometric phase for open systems with and without conserved energy. As an example, the geometric phase for a two-level system coupling both dephasingly and dissipatively to its environment is calculated. Comparison with the results from quantum trajectory analysis is presented and discussed
    corecore