50,338 research outputs found
Mitochondrial heteroplasmy in an avian hybrid form (Passer italiae: Aves, Passeriformes)
Mitochondrial heteroplasmy is the result from biparental transmission of mitochondrial DNA (mtDNA) to the offspring. In such rare cases, maternal and paternal mtDNA is present in the same individual. Though recent studies suggested that mtDNA heteroplasmy might be more common than previously anticipated, that phenomenon is still poorly documented and was mostly detected in case studies on hybrid populations. The Italian sparrow, Passer italiae is a homoploid hybrid form that occurs all across the Italian Peninsula mostly under strict absence of either of its parent species, the house sparrow (P. domesticus) and the Spanish sparrow (P. hispaniolensis). In this study, we document a new case of mitochondrial heteroplasmy from two island populations of P. italiae (Ustica and Lipari). Our analysis was based on the mitochondrial NADH dehydrogenase subunit 2 (ND2) that allows for a clear distinction between mitochondrial lineages of the two parental species. We amplified and sequenced the mitochondrial ND2 gene with specifically designed primer combinations for each of the two parental species. In two of our study populations, a single individual carried two different ND2 haplotypes from each of the two parental lineages. These findings contribute to current knowledge on the still poorly documented phenomenon of paternal leakage in vertebrates
Insecurity of position-based quantum cryptography protocols against entanglement attacks
Recently, position-based quantum cryptography has been claimed to be
unconditionally secure. In contrary, here we show that the existing proposals
for position-based quantum cryptography are, in fact, insecure if entanglement
is shared among two adversaries. Specifically, we demonstrate how the
adversaries can incorporate ideas of quantum teleportation and quantum secret
sharing to compromise the security with certainty. The common flaw to all
current protocols is that the Pauli operators always map a codeword to a
codeword (up to an irrelevant overall phase). We propose a modified scheme
lacking this property in which the same cheating strategy used to undermine the
previous protocols can succeed with a rate at most 85%. We conjecture that the
modified protocol is unconditionally secure and prove this to be true when the
shared quantum resource between the adversaries is a two- or three- level
system
Secure and efficient decoy-state quantum key distribution with inexact pulse intensities
We present a general theorem for the efficient verification of the lower
bound of single-photon transmittance. We show how to do decoy-state quantum key
distribution efficiently with large random errors in the intensity control. In
our protocol, the linear terms of fluctuation disappear and only the quadratic
terms take effect. We then show the unconditional security of decoy-state
method with whatever error pattern in intensities of decoy pulses and signal
pulses provided that the intensity of each decoy pulse is less than and
the intensity of each signal pulse is larger than
Coin Tossing is Strictly Weaker Than Bit Commitment
We define cryptographic assumptions applicable to two mistrustful parties who
each control two or more separate secure sites between which special relativity
guarantees a time lapse in communication. We show that, under these
assumptions, unconditionally secure coin tossing can be carried out by
exchanges of classical information. We show also, following Mayers, Lo and
Chau, that unconditionally secure bit commitment cannot be carried out by
finitely many exchanges of classical or quantum information. Finally we show
that, under standard cryptographic assumptions, coin tossing is strictly weaker
than bit commitment. That is, no secure classical or quantum bit commitment
protocol can be built from a finite number of invocations of a secure coin
tossing black box together with finitely many additional information exchanges.Comment: Final version; to appear in Phys. Rev. Let
A decoy-state protocol for quantum cryptography with 4 intensities of coherent states
In order to beat any type of photon-number-splitting attack, we propose a
protocol for quantum key distributoin (QKD) using 4 different intensities of
pulses. They are vacuum and coherent states with mean photon number
and . is around 0.55 and this class of pulses are used as the
main signal states. The other two classes of coherent states () are
also used signal states but their counting rates should be studied jointly with
the vacuum. We have shown that, given the typical set-up in practice, the key
rate from the main signal pulses is quite close to the theoretically allowed
maximal rate in the case given the small overall transmittance of
Field-induced structure transformation in electrorheological solids
We have computed the local electric field in a body-centered tetragonal (BCT)
lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to
examine the effects of a structure transformation on the local field strength.
For the ground state of an electrorheological solid of hard spheres, we
identified a novel structure transformation from the BCT to the face-centered
cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard
sphere constraint. In contrast to the previous results, the local field
exhibits a non-monotonic transition from BCT to FCC. As c increases from the
BCT ground state, the local field initially decreases rapidly towards the
isotropic value at the body-centered cubic lattice, decreases further, reaching
a minimum value and increases, passing through the isotropic value again at an
intermediate lattice, reaches a maximum value and finally decreases to the FCC
value. An experimental realization of the structure transformation is
suggested. Moreover, the change in the local field can lead to a generalized
Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.
On the communication cost of entanglement transformations
We study the amount of communication needed for two parties to transform some
given joint pure state into another one, either exactly or with some fidelity.
Specifically, we present a method to lower bound this communication cost even
when the amount of entanglement does not increase. Moreover, the bound applies
even if the initial state is supplemented with unlimited entanglement in the
form of EPR pairs, and the communication is allowed to be quantum mechanical.
We then apply the method to the determination of the communication cost of
asymptotic entanglement concentration and dilution. While concentration is
known to require no communication whatsoever, the best known protocol for
dilution, discovered by Lo and Popescu [Phys. Rev. Lett. 83(7):1459--1462,
1999], requires a number of bits to be exchanged which is of the order of the
square root of the number of EPR pairs. Here we prove a matching lower bound of
the same asymptotic order, demonstrating the optimality of the Lo-Popescu
protocol up to a constant factor and establishing the existence of a
fundamental asymmetry between the concentration and dilution tasks.
We also discuss states for which the minimal communication cost is
proportional to their entanglement, such as the states recently introduced in
the context of ``embezzling entanglement'' [W. van Dam and P. Hayden,
quant-ph/0201041].Comment: 9 pages, 1 figure. Added a reference and some further explanations.
In v3 some arguments are given in more detai
- …
