50,338 research outputs found

    Mitochondrial heteroplasmy in an avian hybrid form (Passer italiae: Aves, Passeriformes)

    Get PDF
    Mitochondrial heteroplasmy is the result from biparental transmission of mitochondrial DNA (mtDNA) to the offspring. In such rare cases, maternal and paternal mtDNA is present in the same individual. Though recent studies suggested that mtDNA heteroplasmy might be more common than previously anticipated, that phenomenon is still poorly documented and was mostly detected in case studies on hybrid populations. The Italian sparrow, Passer italiae is a homoploid hybrid form that occurs all across the Italian Peninsula mostly under strict absence of either of its parent species, the house sparrow (P. domesticus) and the Spanish sparrow (P. hispaniolensis). In this study, we document a new case of mitochondrial heteroplasmy from two island populations of P. italiae (Ustica and Lipari). Our analysis was based on the mitochondrial NADH dehydrogenase subunit 2 (ND2) that allows for a clear distinction between mitochondrial lineages of the two parental species. We amplified and sequenced the mitochondrial ND2 gene with specifically designed primer combinations for each of the two parental species. In two of our study populations, a single individual carried two different ND2 haplotypes from each of the two parental lineages. These findings contribute to current knowledge on the still poorly documented phenomenon of paternal leakage in vertebrates

    Insecurity of position-based quantum cryptography protocols against entanglement attacks

    Full text link
    Recently, position-based quantum cryptography has been claimed to be unconditionally secure. In contrary, here we show that the existing proposals for position-based quantum cryptography are, in fact, insecure if entanglement is shared among two adversaries. Specifically, we demonstrate how the adversaries can incorporate ideas of quantum teleportation and quantum secret sharing to compromise the security with certainty. The common flaw to all current protocols is that the Pauli operators always map a codeword to a codeword (up to an irrelevant overall phase). We propose a modified scheme lacking this property in which the same cheating strategy used to undermine the previous protocols can succeed with a rate at most 85%. We conjecture that the modified protocol is unconditionally secure and prove this to be true when the shared quantum resource between the adversaries is a two- or three- level system

    Secure and efficient decoy-state quantum key distribution with inexact pulse intensities

    Full text link
    We present a general theorem for the efficient verification of the lower bound of single-photon transmittance. We show how to do decoy-state quantum key distribution efficiently with large random errors in the intensity control. In our protocol, the linear terms of fluctuation disappear and only the quadratic terms take effect. We then show the unconditional security of decoy-state method with whatever error pattern in intensities of decoy pulses and signal pulses provided that the intensity of each decoy pulse is less than μ\mu and the intensity of each signal pulse is larger than μ\mu'

    Coin Tossing is Strictly Weaker Than Bit Commitment

    Full text link
    We define cryptographic assumptions applicable to two mistrustful parties who each control two or more separate secure sites between which special relativity guarantees a time lapse in communication. We show that, under these assumptions, unconditionally secure coin tossing can be carried out by exchanges of classical information. We show also, following Mayers, Lo and Chau, that unconditionally secure bit commitment cannot be carried out by finitely many exchanges of classical or quantum information. Finally we show that, under standard cryptographic assumptions, coin tossing is strictly weaker than bit commitment. That is, no secure classical or quantum bit commitment protocol can be built from a finite number of invocations of a secure coin tossing black box together with finitely many additional information exchanges.Comment: Final version; to appear in Phys. Rev. Let

    A decoy-state protocol for quantum cryptography with 4 intensities of coherent states

    Full text link
    In order to beat any type of photon-number-splitting attack, we propose a protocol for quantum key distributoin (QKD) using 4 different intensities of pulses. They are vacuum and coherent states with mean photon number μ,μ\mu,\mu' and μs\mu_s. μs\mu_s is around 0.55 and this class of pulses are used as the main signal states. The other two classes of coherent states (μ,μ\mu,\mu') are also used signal states but their counting rates should be studied jointly with the vacuum. We have shown that, given the typical set-up in practice, the key rate from the main signal pulses is quite close to the theoretically allowed maximal rate in the case given the small overall transmittance of 10410^{-4}

    Field-induced structure transformation in electrorheological solids

    Full text link
    We have computed the local electric field in a body-centered tetragonal (BCT) lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to examine the effects of a structure transformation on the local field strength. For the ground state of an electrorheological solid of hard spheres, we identified a novel structure transformation from the BCT to the face-centered cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard sphere constraint. In contrast to the previous results, the local field exhibits a non-monotonic transition from BCT to FCC. As c increases from the BCT ground state, the local field initially decreases rapidly towards the isotropic value at the body-centered cubic lattice, decreases further, reaching a minimum value and increases, passing through the isotropic value again at an intermediate lattice, reaches a maximum value and finally decreases to the FCC value. An experimental realization of the structure transformation is suggested. Moreover, the change in the local field can lead to a generalized Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.

    On the communication cost of entanglement transformations

    Get PDF
    We study the amount of communication needed for two parties to transform some given joint pure state into another one, either exactly or with some fidelity. Specifically, we present a method to lower bound this communication cost even when the amount of entanglement does not increase. Moreover, the bound applies even if the initial state is supplemented with unlimited entanglement in the form of EPR pairs, and the communication is allowed to be quantum mechanical. We then apply the method to the determination of the communication cost of asymptotic entanglement concentration and dilution. While concentration is known to require no communication whatsoever, the best known protocol for dilution, discovered by Lo and Popescu [Phys. Rev. Lett. 83(7):1459--1462, 1999], requires a number of bits to be exchanged which is of the order of the square root of the number of EPR pairs. Here we prove a matching lower bound of the same asymptotic order, demonstrating the optimality of the Lo-Popescu protocol up to a constant factor and establishing the existence of a fundamental asymmetry between the concentration and dilution tasks. We also discuss states for which the minimal communication cost is proportional to their entanglement, such as the states recently introduced in the context of ``embezzling entanglement'' [W. van Dam and P. Hayden, quant-ph/0201041].Comment: 9 pages, 1 figure. Added a reference and some further explanations. In v3 some arguments are given in more detai
    corecore