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Mitochondrial heteroplasmy in an avian hybrid form (Passer italiae: Aves,
Passeriformes)
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aSenckenberg Naturhistorische Sammlungen, Dresden, Germany; bCooperativa Silene, Palermo, Italy; cDipartimento di Scienze e Tecnologie
Biologiche Chimiche e Farmaceutiche, Universita degli Studi di Palermo, Palermo, Italy

ABSTRACT
Mitochondrial heteroplasmy is the result from biparental transmission of mitochondrial DNA (mtDNA)
to the offspring. In such rare cases, maternal and paternal mtDNA is present in the same individual.
Though recent studies suggested that mtDNA heteroplasmy might be more common than previously
anticipated, that phenomenon is still poorly documented and was mostly detected in case studies on
hybrid populations. The Italian sparrow, Passer italiae is a homoploid hybrid form that occurs all across
the Italian Peninsula mostly under strict absence of either of its parent species, the house sparrow
(P. domesticus) and the Spanish sparrow (P. hispaniolensis). In this study, we document a new case of
mitochondrial heteroplasmy from two island populations of P. italiae (Ustica and Lipari). Our analysis
was based on the mitochondrial NADH dehydrogenase subunit 2 (ND2) that allows for a clear distinc-
tion between mitochondrial lineages of the two parental species. We amplified and sequenced the
mitochondrial ND2 gene with specifically designed primer combinations for each of the two parental
species. In two of our study populations, a single individual carried two different ND2 haplotypes from
each of the two parental lineages. These findings contribute to current knowledge on the still poorly
documented phenomenon of paternal leakage in vertebrates.
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Introduction

In animals, strict maternal inheritance of mitochondrial DNA
(mtDNA) is considered the rule, whereas bipaternal inherit-
ance of mtDNA is regarded as an atypical and rather occa-
sional exception (review in Breton and Stewart 2015). The
latter rare phenomenon is known under the term ‘paternal
leakage’, i.e. the transmission of male parent’s mitochondria
to the ovum and thus to the heteroplasmic offspring. As the
basic result of paternal leakage, mtDNA heteroplasmy defines
the state when both paternal and maternal mtDNA are pre-
sent in one individual (Breton and Stewart 2015;
Mastrantonio et al. 2019). To date, there are only a few case
reports of mitochondrial heteroplasmy in a few species all
across the animal kingdom. Most of them refer to interspe-
cific crosses that were occasionally documented as a byprod-
uct from hybrid zone studies (as discussed in Bromham et al.
2002; Gandolfi et al. 2017). In some invertebrates, paternal
leakage appears to be more frequent due to specific modes
of fertilization (Meusel and Moritz 1993; Nunes et al. 2013;
Wolff et al. 2013; Dokianakis and Ladoukakis 2014; Meza-
L�azaro et al. 2018). However, a recent paper listed only 24
known case studies of paternal leakage in arthropods (ten of
these within or among Drosophila species) including a new
case study from Rhipicephalus ticks (Mastrantonio et al. 2019).
However, many of the documented cases refer to

experimental crosses (e.g. Adineh and Ross 2019), whereas
examples from populations in the wild still appear to be rare.
In some of the few examples from vertebrates, mtDNA heter-
oplasmy was suggested to be correlated with size poly-
morphism of mtDNA (Bermingham et al. 1986; Wolff et al.
2008). The latter examples of length heteroplasmy are gener-
ally distinguished from cases of point heteroplasmy, where
maternal and paternal haplotypes of heteroplasmic individu-
als differ at single nucleotide positions (Just et al. 2015).

In this study, we document a further case of point hetero-
plasmy in a passerine bird. Examples from birds are also rare
and refer to case studies of hybrid zones (Kvist et al. 2003)
and to a particular stabilized hybrid form, the Italian sparrow,
Passer italiae (Elgvin et al. 2017; Runemark et al. 2018). This
homoploid hybrid form (Schumer et al. 2014) emerged from
past hybridization between the house sparrow, P. domesticus,
and the Spanish sparrow, P. hispaniolensis (Elgvin et al. 2011,
2017; Hermansen et al. 2011, 2014). It occurs all across the
Italian Peninsula and on several Mediterranean islands mostly
under the strict absence of either of its parent species (del
Hoyo and Collar 2016). Italian sparrows (P. italiae) almost
exclusively carry the mtDNA lineage of the house sparrow,
whereas the Spanish sparrow mtDNA lineage is almost
absent in Italian populations (Hermansen et al. 2011). In
North Africa, a mosaic hybrid zone extends from eastern
Morocco to Tunisia, where phenotypical hybrid populations
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occur in close vicinity with both parental species (Belkacem
et al. 2016). In the following, we briefly report on a case of
heteroplasmic individuals of P. italiae from two
Mediterranean island populations.

Materials and methods

In a previous study on mitochondrial introgression among
North African sparrow hybrids and the two parental species
we had amplified and sequenced NADH dehydrogenase sub-
unit 2 (ND2) as a marker gene (Belkacem et al. 2016). In our
sampling used for that study, the sequences inferred from
two individuals of P. italiae from Mediterranean islands (ITA5
from Ustica (Figure 1(A)) and ITA52 from Lipari) showed an
equivocal signal in the electropherogram. Though we had
repeated DNA extraction, amplification, and sequencing twice
with the two problematic samples, we still received the same
result after each repetition. In the alignment (with MEGA 5.1;
Tamura et al. 2011), the sequences of ITA5 and ITA52 showed
double peaks (Figure 1(B)), only at the variable sites that
were diagnostic for each of the two parental species
P. domesticus and P. hispaniolensis. This result might be indi-
cative of heteroplasmy due to rare paternal leakage of
mtDNA (Breton and Stewart 2015). The sequences from the
two putative heteroplasmic individuals had therefore been
discarded from further phylogeographic reconstructions by
Belkacem et al. (2016).

To verify our hypothesis and to separate different haplo-
types from the same sample, we designed specific primer
pairs with diagnostic substitutions for each of the parental
species (including one substitution at or near the 30-end).
Primer combination for the house sparrow: PassdomspecF¼
50-GAG GTA TTG CAA GGT TCA CCT C-30, PassdomspecR¼ 50-
GCA ACA ATT ACA CTG CCC CCT CAC-30; for the Spanish
sparrow: PasshisspecF¼GAA GTG CTG CAA GGT TCA CCC,
PasshisspecR¼CAC GAC AAT TAC ACT ACC CCC TCA T-30.

With these primers we amplified a 526 bp-long ND2 fragment
in a touch-down PCR with the following settings: initial deg-
radation for 5min at 94 �C followed by 5 cycles of 45 s at
94 �C, 45 s annealing at 57 �C and 45 s elongation at 72 �C,
followed by 5 cycles 45 s at 94 �C, 45 s at 55 �C and 45 s at
72 �C, followed by 25 cycles of 45 s at 94 �C, 45 s at 53 �C and
45 s at 72 �C with a final elongation step of 5min at 72 �C.

PCR products were purified using ExoSAP-ITTM

(ThermoFischer Scientific, Waltham, MA, USA) according to
the manufacturer’s instructions. Purified PCR products were
sequenced on a 16-column automatic capillary sequencer (ABI
3130xl, Applied Biosystems, Foster City, CA, USA) using POP-7
as a polymer. Variable and ambiguous sites were checked
visually for accuracy and validated by examining the raw data
electropherogram output file using CHROMAS. Nucleotide
sequences were translated into protein sequences with MEGA
5.1 in order to control for stop codons and thus to exclude
nuclear mitochondrial paralogues (numts) as a potential cause
of mtDNA polymorphism (Meza-L�azaro et al. 2018).

For comparison, we used ND2 sequences from 330 indi-
viduals including the data set by Belkacem et al. (2016).
Sequences have been deposited at GenBank under accession
numbers KX370619–KX370815 (Belkacem et al. 2016),
MN488840–MN488995 (P€ackert et al. 2019) and
MN442613–MN442618 (sequences from heteroplasmic indi-
viduals generated for this study). Origin and metadata for all
samples used for analysis can be inferred from a material
table provided at Dryad under DOI: https://doi.org/10.5061/
dryad.v9s4mw6qf.

The short sequences of the two putative heteroplasmic indi-
viduals inferred from separate PCRs with different primer com-
binations were included in the ND2 alignment and all
sequences were cut down to a length of 506 bp (length of the
short fragment without primer regions; 63 segregating sites).
The alignment was used for the reconstruction of an mtDNA
haplotype network using POPART (Leigh and Bryant 2015).

Figure 1. MtDNA heteroplasmy in one Italian sparrow, P. italiae; (A) ITA5 from Ustica island; photo M. Lo Valvo; (B) chromatograms of ND2 sequences, from three
independent PCRs and sequencing reactions with standard primers and specific primers for mtDNA lineages of the house sparrow, P. domesticus, and the Spanish
sparrow, P. hispaniolensis; segregating sites indicated by bold arrows.
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Results and discussion

PCR with specific primer combinations yielded two strongly
different ND2 haplotypes in each of the two individuals ITA5
and ITA52. Sequences inferred from independent PCR reac-
tions with species-specific primers did not contain any dou-
ble peaks and differed at those segregating sites that
showed double peaks in ND2 sequences inferred from PCR
with standard primers. Figure 1(B) compares a short excerpt
of the chromatograms generated for bird ITA5: for the first
double peak in the sequence from the left inferred with
standard primes (Y¼C/T) the house sparrow primer combin-
ation yielded a T and the Spanish sparrow combination a C
at the same site (position 477, Figure 1(B)). The same differ-
ences between sequences inferred from PCR products with
standard primers and those inferred from PCR products with
specific primers are found for double peaks at sites 481, 488
and 505 (Figure 1(B)) and for all double peaks towards the
30-end and the 50-end of the sequences (not shown).

The haplotype network clearly separated two clusters that
differed by a minimum of 15 substitutions (Figure 2). The
more complex cluster comprised 42 haplotypes from all
Eurasian and North African house sparrow populations and

several P. italiae populations. The most common haplotype
(A) was found in 143 individuals across the entire breeding
range of the house sparrow, whereas another common
haplotype (B) was found in 59 individuals mainly from a cir-
cum-Mediterranean range, i.e. in Italian populations (27 out
of 55 P. italiae carried that haplotype), North African admixed
populations and Turkish house sparrow populations. The
Spanish sparrow cluster comprised 17 haplotypes with the
central one (haplotype C; Figure 2) found in 36 individual
samples. Sequences from each of the two putative hetero-
plasmic individuals (ITA5 and ITA52) were indeed nested in
separate clusters of the haplotype network. Sequences
inferred from PCR with house sparrow primers matched
haplotype B for both samples, whereas sequences inferred
from PCR with Spanish sparrow primers matched one of the
tip haplotypes of the P. hispaniolensis cluster (Figure 2). Apart
from the two heteroplasmic individuals none of our P. italiae
samples (n¼ 52) carried a haplotype from the P. hispaniolen-
sis lineage. However, heteroplasmy has been documented in
other populations of the stabilized hybrid P. italiae, e.g. from
Malta (Runemark et al. 2018) and from the Italian Peninsula
(Elgvin et al. 2017). It has been recently considered that het-
eroplasmy is a much more common phenomenon than

Figure 2. ND2 haplotype network for 330 samples of house sparrows (P. domesticus), Italian sparrows (P. italiae), and Spanish sparrows (P. hispaniolensis); circles
represent haplotypes including information on proportions of individuals from one of the three species sharing a given haplotype (e.g. A, B, and C as the most fre-
quent ones); numbers of substitutions indicated by dashes at connecting lines; haplotypes found in the two heteroplasmic individuals of P. italiae marked
by asterisks.
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previously anticipated (Just et al. 2015). In fact, most docu-
mented cases of mtDNA heteroplasmy originated from inter-
specific crosses, i.e. when mitochondrial genomes are easily
distinguished, whereas cases of conspecific crosses might be
easily overlooked due to greater similarity of subspecific
mtDNA lineages (Mastrantonio et al. 2019). In natural popula-
tions, heteroplasmic individuals have been documented for
example in Drosophila flies (Nunes et al. 2013; Wolff et al.
2013; Dokianakis and Ladoukakis 2014) and in sterlet stur-
geons, Acipenser ruthenus (Dudu et al. 2012). Furthermore,
paternal leakage has been documented from a tit hybrid
zone (Kvist et al. 2003) and from a water frog species of
hybrid origin on the Balkan Peninsula (Radoji�ci�c et al. 2015).
Probably, newly emerging methods such as massive parallel
sequencing will be decisive to shed light on this issue by
showing a greater detection rate of heteroplasmic individuals
than traditional Sanger sequencing (Just et al. 2015;
Santibanez-Koref et al. 2019).
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