61 research outputs found

    Singular riemannian foliations with sections, transnormal maps and basic forms

    Full text link
    A singular riemannian foliation F on a complete riemannian manifold M is said to admit sections if each regular point of M is contained in a complete totally geodesic immersed submanifold (a section) that meets every leaf of F orthogonally and whose dimension is the codimension of the regular leaves of F. We prove that the algebra of basic forms of M relative to F is isomorphic to the algebra of those differential forms on a section that are invariant under the generalized Weyl pseudogroup of this section. This extends a result of Michor for polar actions. It follows from this result that the algebra of basic function is finitely generated if the sections are compact. We also prove that the leaves of F coincide with the level sets of a transnormal map (generalization of isoparametric map) if M is simply connected, the sections are flat and the leaves of F are compact. This result extends previous results due to Carter and West, Terng, and Heintze, Liu and Olmos.Comment: Preprint IME-USP; The final publication is available at springerlink.com http://www.springerlink.com/content/q48682633730t831

    Boundary Conditions in Stepwise Sine-Gordon Equation and Multi-Soliton Solutions

    Get PDF
    We study the stepwise sine-Gordon equation, in which the system parameter is different for positive and negative values of the scalar field. By applying appropriate boundary conditions, we derive relations between the soliton velocities before and after collisions. We investigate the possibility of formation of heavy soliton pairs from light ones and vise versa. The concept of soliton gun is introduced for the first time; a light pair is produced moving with high velocity, after the annihilation of a bound, heavy pair. We also apply boundary conditions to static, periodic and quasi-periodic solutions.Comment: 14 pages, 8 figure

    Reduced dynamics of Ward solitons

    Full text link
    The moduli space of static finite energy solutions to Ward's integrable chiral model is the space MNM_N of based rational maps from \CP^1 to itself with degree NN. The Lagrangian of Ward's model gives rise to a K\"ahler metric and a magnetic vector potential on this space. However, the magnetic field strength vanishes, and the approximate non--relativistic solutions to Ward's model correspond to a geodesic motion on MNM_N. These solutions can be compared with exact solutions which describe non--scattering or scattering solitons.Comment: Final version, to appear in Nonlinearit

    The geometric sense of R. Sasaki connection

    Full text link
    For the Riemannian manifold MnM^{n} two special connections on the sum of the tangent bundle TMnTM^{n} and the trivial one-dimensional bundle are constructed. These connections are flat if and only if the space MnM^{n} has a constant sectional curvature ±1\pm 1. The geometric explanation of this property is given. This construction gives a coordinate free many-dimensional generalization of the connection from the paper: R. Sasaki 1979 Soliton equations and pseudospherical surfaces, Nuclear Phys., {\bf 154 B}, pp. 343-357. It is shown that these connections are in close relation with the imbedding of MnM^{n} into Euclidean or pseudoeuclidean (n+1)(n+1)-dimension spaces.Comment: 7 pages, the key reference to the paper of Min-Oo is included in the second versio

    Darboux transformation for the modified Veselov-Novikov equation

    Full text link
    A Darboux transformation is constructed for the modified Veselov-Novikov equation.Comment: Latex file,8 pages, 0 figure

    Symplectically-invariant soliton equations from non-stretching geometric curve flows

    Full text link
    A moving frame formulation of geometric non-stretching flows of curves in the Riemannian symmetric spaces Sp(n+1)/Sp(1)×Sp(n)Sp(n+1)/Sp(1)\times Sp(n) and SU(2n)/Sp(n)SU(2n)/Sp(n) is used to derive two bi-Hamiltonian hierarchies of symplectically-invariant soliton equations. As main results, multi-component versions of the sine-Gordon (SG) equation and the modified Korteweg-de Vries (mKdV) equation exhibiting Sp(1)×Sp(n1)Sp(1)\times Sp(n-1) invariance are obtained along with their bi-Hamiltonian integrability structure consisting of a shared hierarchy of symmetries and conservation laws generated by a hereditary recursion operator. The corresponding geometric curve flows in Sp(n+1)/Sp(1)×Sp(n)Sp(n+1)/Sp(1)\times Sp(n) and SU(2n)/Sp(n)SU(2n)/Sp(n) are shown to be described by a non-stretching wave map and a mKdV analog of a non-stretching Schr\"odinger map.Comment: 39 pages; remarks added on algebraic aspects of the moving frame used in the constructio

    A geometric interpretation of the spectral parameter for surfaces of constant mean curvature

    Full text link
    Considering the kinematics of the moving frame associated with a constant mean curvature surface immersed in S^3 we derive a linear problem with the spectral parameter corresponding to elliptic sinh-Gordon equation. The spectral parameter is related to the radius R of the sphere S^3. The application of the Sym formula to this linear problem yields constant mean curvature surfaces in E^3. Independently, we show that the Sym formula itself can be derived by an appropriate limiting process R -> infinity.Comment: 12 page

    Multidimensional Toda type systems

    Get PDF
    On the base of Lie algebraic and differential geometry methods, a wide class of multidimensional nonlinear systems is obtained, and the integration scheme for such equations is proposed.Comment: 29 pages, LaTeX fil

    Polar foliations and isoparametric maps

    Full text link
    A singular Riemannian foliation FF on a complete Riemannian manifold MM is called a polar foliation if, for each regular point pp, there is an immersed submanifold Σ\Sigma, called section, that passes through pp and that meets all the leaves and always perpendicularly. A typical example of a polar foliation is the partition of MM into the orbits of a polar action, i.e., an isometric action with sections. In this work we prove that the leaves of FF coincide with the level sets of a smooth map H:MΣH: M\to \Sigma if MM is simply connected. In particular, we have that the orbits of a polar action on a simply connected space are level sets of an isoparametric map. This result extends previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter and West, and Terng.Comment: 9 pages; The final publication is available at springerlink.com http://www.springerlink.com/content/c72g4q5350g513n1

    Hamiltonian evolutions of twisted gons in \RP^n

    Full text link
    In this paper we describe a well-chosen discrete moving frame and their associated invariants along projective polygons in \RP^n, and we use them to write explicit general expressions for invariant evolutions of projective NN-gons. We then use a reduction process inspired by a discrete Drinfeld-Sokolov reduction to obtain a natural Hamiltonian structure on the space of projective invariants, and we establish a close relationship between the projective NN-gon evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that {any} Hamiltonian evolution is induced on invariants by an evolution of NN-gons - what we call a projective realization - and we give the direct connection. Finally, in the planar case we provide completely integrable evolutions (the Boussinesq lattice related to the lattice W3W_3-algebra), their projective realizations and their Hamiltonian pencil. We generalize both structures to nn-dimensions and we prove that they are Poisson. We define explicitly the nn-dimensional generalization of the planar evolution (the discretization of the WnW_n-algebra) and prove that it is completely integrable, providing also its projective realization
    corecore