73,631 research outputs found

    Numerical analysis of the hydrodynamic behaviour of immiscible metallic alloys in twin-screw rheomixing process

    Get PDF
    A numerical analysis by a VOF method is presented for studying the hydrodynamic mechanisms of the rheomixing process by a twin-screw extruder (TSE). The simplified flow field is established based on a systematic analysis of flow features of immiscible alloys in TSE rheomixing process. The studies focus on the fundamental microstructure mechanisms of rheological behaviour in shear-induced turbulent flows. It is noted that the microstructure of immiscible alloys in the mixing process is strongly influenced by the interaction between droplets, which is controlled by shearing forces, viscosity ratio, turbulence, and shearing time. The numerical results show a good qualitative agreement with the experimental results, and are useful for further optimisation design of prototypical rheomixing processes

    Properties of Resonating-Valence-Bond Spin Liquids and Critical Dimer Models

    Full text link
    We use Monte Carlo simulations to study properties of Anderson's resonating-valence-bond (RVB) spin-liquid state on the square lattice (i.e., the equal superposition of all pairing of spins into nearest-neighbor singlet pairs) and compare with the classical dimer model (CDM). The latter system also corresponds to the ground state of the Rokhsar-Kivelson quantum dimer model at its critical point. We find that although spin-spin correlations decay exponentially in the RVB, four-spin valence-bond-solid (VBS) correlations are critical, qualitatively like the well-known dimer-dimer correlations of the CDM, but decaying more slowly (as 1/ra1/r^a with a1.20a \approx 1.20, compared with a=2a=2 for the CDM). We also compute the distribution of monomer (defect) pair separations, which decay by a larger exponent in the RVB than in the CDM. We further study both models in their different winding number sectors and evaluate the relative weights of different sectors. Like the CDM, all the observed RVB behaviors can be understood in the framework of a mapping to a "height" model characterized by a gradient-squared stiffness constant KK. Four independent measurements consistently show a value KRVB1.6KCDMK_{RVB} \approx 1.6 K_{CDM}, with the same kinds of numerical evaluations of KCDMK_{CDM} give results in agreement with the rigorously known value KCDM=π/16K_{CDM}=\pi/16. The background of a nonzero winding number gradient W/LW/L introduces spatial anisotropies and an increase in the effective K, both of which can be understood as a consequence of anharmonic terms in the height-model free energy, which are of relevance to the recently proposed scenario of "Cantor deconfinement" in extended quantum dimer models. We also study ensembles in which fourth-neighbor (bipartite) bonds are allowed, at a density controlled by a tunable fugacity, resulting (as expected) in a smooth reduction of K.Comment: 26 pages, 21 figures. v3: final versio

    DC Spin Current Generation in a Rashba-type Quantum Channel

    Full text link
    We propose and demonstrate theoretically that resonant inelastic scattering (RIS) can play an important role in dc spin current generation. The RIS makes it possible to generate dc spin current via a simple gate configuration: a single finger-gate that locates atop and orients transversely to a quantum channel in the presence of Rashba spin-orbit interaction. The ac biased finger-gate gives rise to a time-variation in the Rashba coupling parameter, which causes spin-resolved RIS, and subsequently contributes to the dc spin current. The spin current depends on both the static and the dynamic parts in the Rashba coupling parameter, α0\alpha_0 and α1\alpha_1, respectively, and is proportional to α0α12\alpha_0 \alpha_1^2. The proposed gate configuration has the added advantage that no dc charge current is generated. Our study also shows that the spin current generation can be enhanced significantly in a double finger-gate configuration.Comment: 4 pages,4 figure

    Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires

    Get PDF
    Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces

    Hydrodynamic Analysis of Binary Immiscible Metallurgical Flow in a Novel Mixing Process: Rheomixing

    Get PDF
    This paper presents a hydrodynamic analysis of binary immiscible metallurgical flow by a numerical simulation of the rheomixing process. The concept of multi-controll is proposed for classifying complex processes and identifying individual processes in an immiscible alloy system in order to perform simulations. A brief review of fabrication methods for immiscible alloys is given, and fluid flow aspects of a novel fabrication method – rheomixing by twin-screw extruder (TSE) are analysed. Fundamental hydrodynamic micro-mechanisms in a TSE are simulated by a piecewise linear (PLIC) volume-of-fluid (VOF) method coupled with the continuum surface force (CFS) algorithm. This revealed that continuous reorientation in the TSE process could produce fine droplets and the best mixing efficiency. It is verified that TSE is a better mixing device than single screw extruder (SSE) and can achieve finer droplets. Numerical results show good qualitative agreement with experimental results. It is concluded that rheomixing by a TSE can be successfully employed for casting immiscible engineering alloys due to its unique characteristics of reorientation and surface renewal

    Density of states and electron concentration of double heterojunctions subjected to an in-plane magnetic field

    Full text link
    We calculate the electronic states of Alx_xGa1x_{1-x}As/GaAs/Alx_xGa1x_{1-x}As double heterojunctions subjected to a magnetic field parallel to the quasi two-dimensional electron gas. We study the energy dispersion curves, the density of states, the electron concentration and the distribution of the electrons in the subbands. The parallel magnetic field induces severe changes in the density of states, which are of crucial importance for the explanation of the magnetoconductivity in these structures. However, to our knowledge, there is no systematic study of the density of states under these circumstances. We attempt a contribution in this direction. For symmetric heterostructures, the depopulation of the higher subbands, the transition from a single to a bilayer electron system and the domination of the bulk Landau levels in the centre the wide quantum well, as the magnetic field is continuously increased, are presented in the ``energy dispersion picture'' as well as in the ``electron concentration picture'' and in the ``density of states picture''.Comment: J. Phys.: Condens. Matter 11 No 26 (5 July 1999) 5131-5141 Figures (three) embedde

    Production mechanisms and single-spin asymmetry for kaons in high energy hadron-hadron collisions

    Full text link
    Direct consequences on kaon production of the picture proposed in a recent Letter and subsequent publications are discussed. Further evidence supporting the proposed picture is obtained. Comparison with the data for the inclusive cross sections in unpolarized reactions is made. Quantitative results for the left-right asymmetry in single-spin processes are presented.Comment: 10 pages, 2 Postscript figure

    AC Oscillation of a Spin Soliton Driven by a Constant Force

    Full text link
    The phenomena of AC oscillation generated by a DC drive, such as the famous Josephson AC effect in superconductors and Bloch oscillation in solid physics, are of great interest in physics. Here we report another example of such counter-intuitive phenomenon that a spin soliton in a two-component Bose-Einstein condensate is driven by a constant force: The initially static spin soliton first moves in a direction opposite to the force and then changes direction, showing an extraordinary AC oscillation in a long term. In sharp contrast to the Josephson AC effect and Bloch oscillation, we find that the nonlinear interactions play important roles and the spin soliton can exhibit a periodic transition between negative and positive inertial mass even in the absence of periodic potentials. We then develop an explicit quasiparticle model that can account for this extraordinary oscillation satisfactorily. Important implications and possible applications of our finding are discussed.Comment: 9 pages, 6 figure
    corecore