205,140 research outputs found
A fibre optic sensor for the measurement of surface roughness and displacement using artificial neural networks
This paper presents a fiber optic sensor system, artificial neural networks (fast back-propagation) are employed for the data processing. The use of the neural networks makes it possible for the sensor to be used both for surface roughness and displacement measurement at the same time. The results indicate 100% correct surface classification for ten different surfaces (different materials, different manufacturing methods, and different surface roughnesses) and displacement errors less then ±5 μm. The actual accuracy was restricted by the calibration machine. A measuring range of ±0.8 mm for the displacement measurement was achieved
Electroluminescence and photoluminescence of Ge-implanted Si/SiO_2/Si structures
Electroluminescent devices were fabricated in SiO_2 films containing Ge nanocrystals formed by ion implantation and precipitation during annealing at 900 °C, and the visible room‐temperature electroluminescence and photoluminescence spectra were found to be broadly similar. The electroluminescent devices have an onset for emission in reverse bias of approximately −10 V, suggesting that the mechanism for carrier excitation may be an avalanche breakdown caused by injection of hot carriers into the oxide. The electroluminescent emission was stable for periods exceeding 6 h
Spin relaxation in diluted magnetic semiconductor quantum dots
Electron spin relaxation induced by phonon-mediated s-d exchange interaction
in a II-VI diluted magnetic semiconductor quantum dot is investigated
theoretically. The electron-acoustic phonon interaction due to piezoelectric
coupling and deformation potential is included. The resulting spin lifetime is
typically on the order of microseconds. The effectiveness of the
phonon-mediated spin-flip mechanism increases with increasing Mn concentration,
electron spin splitting, vertical confining strength and lateral diameter,
while it shows non-monotonic dependence on the magnetic field and temperature.
An interesting finding is that the spin relaxation in a small quantum dot is
suppressed for strong magnetic field and low Mn concentration at low
temperature.Comment: 11 pages, 11 figures, to be published in Phys. Rev.
Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information
Rainfall frequency analysis, which is an important tool in hydrologic engineering, has been traditionally performed using information from gauge observations. This approach has proven to be a useful tool in planning and design for the regions where sufficient observational data are available. However, in many parts of the world where ground-based observations are sparse and limited in length, the effectiveness of statistical methods for such applications is highly limited. The sparse gauge networks over those regions, especially over remote areas and high-elevation regions, cannot represent the spatiotemporal variability of extreme rainfall events and hence preclude developing depth-duration-frequency curves (DDF) for rainfall frequency analysis. In this study, the PERSIANN-CDR dataset is used to propose a mechanism, by which satellite precipitation information could be used for rainfall frequency analysis and development of DDF curves. In the proposed framework, we first adjust the extreme precipitation time series estimated by PERSIANN-CDR using an elevation-based correction function, then use the adjusted dataset to develop DDF curves. As a proof of concept, we have implemented our proposed approach in 20 river basins in the United States with different climatic conditions and elevations. Bias adjustment results indicate that the correction model can significantly reduce the biases in PERSIANN-CDR estimates of annual maximum series, especially for high elevation regions. Comparison of the extracted DDF curves from both the original and adjusted PERSIANN-CDR data with the reported DDF curves from NOAA Atlas 14 shows that the extreme percentiles from the corrected PERSIANN-CDR are consistently closer to the gauge-based estimates at the tested basins. The median relative errors of the frequency estimates at the studied basins were less than 20% in most cases. Our proposed framework has the potential for constructing DDF curves for regions with limited or sparse gauge-based observations using remotely sensed precipitation information, and the spatiotemporal resolution of the adjusted PERSIANN-CDR data provides valuable information for various applications in remote and high elevation areas
Renormalizability of the nuclear many-body problem with the Skyrme interaction beyond mean field
Phenomenological effective interactions like Skyrme forces are currently used
in mean--field calculations in nuclear physics. Mean--field models have strong
analogies with the first order of the perturbative many--body problem and the
currently used effective interactions are adjusted at the mean--field level. In
this work, we analyze the renormalizability of the nuclear many--body problem
in the case where the effective Skyrme interaction is employed in its standard
form and the perturbative problem is solved up to second order. We focus on
symmetric nuclear matter and its equation of state, which can be calculated
analytically at this order. It is shown that only by applying specific density
dependence and constraints to the interaction parameters could
renormalizability be guaranteed in principle. This indicates that the standard
Skyrme interaction does not in general lead to a renormalizable theory. For
achieving renormalizability, other terms should be added to the interaction and
employed perturbatively only at first order.Comment: Revised versio
The infrared conductivity of NaCoO: evidence of gapped states
We present infrared ab-plane conductivity data for the layered cobaltate
NaCoO at three different doping levels (, and 0.75). The
Drude weight increases monotonically with hole doping, . At the lowest
hole doping level =0.75 the system resembles the normal state of underdoped
cuprate superconductors with a scattering rate that varies linearly with
frequency and temperature and there is an onset of scattering by a bosonic mode
at 600 \cm. Two higher hole doped samples ( and 0.25) show two
different-size gaps (110 \cm and 200 \cm, respectively) in the optical
conductivities at low temperatures and become insulators. The spectral weights
lost in the gap region of 0.50 and 0.25 samples are shifted to prominent peaks
at 200 \cm and 800 \cm, respectively. We propose that the two gapped states of
the two higher hole doped samples (=0.50 and 0.25) are pinned charge ordered
states.Comment: 4 pages, 3 figure
A plausible mechanism for the evolution of helical forms in nanostructure growth
The observation of helices and coils in nano-tube/-fiber (NT/NF) syntheses is explained on the basis of the interactions between specific catalyst particles and the growing nanostructure. In addition to rationalizing nonlinear structure, the proposed model probes the interplay between thermodynamic quantities and predicts conditions for optimal growth. Experimental results on the effect of indium catalyst on affecting the coil pitch in NTs and NFs are presented
Determination of the Sign of g factors for Conduction Electrons Using Time-resolved Kerr Rotation
The knowledge of electron g factor is essential for spin manipulation in the
field of spintronics and quantum computing. While there exist technical
difficulties in determining the sign of g factor in semiconductors by the
established magneto-optical spectroscopic methods. We develop a time resolved
Kerr rotation technique to precisely measure the sign and the amplitude of
electron g factor in semiconductors
- …
