14,445 research outputs found
Silicon solar cell process development, fabrication, and analysis
Two large cast ingots were evaluated. Solar cell performance versus substrate position within the ingots was obtained and the results are presented. Dendritic web samples were analyzed in terms of structural defects, and efforts were made to correlate the data with the performance of solar cells made from the webs
Silicon solar cell process development, fabrication and analysis
Solar cells were fabricated from EFG ribbons dendritic webs, cast ingots by heat exchanger method, and cast ingots by ubiquitous crystallization process. Baseline and other process variations were applied to fabricate solar cells. EFG ribbons grown in a carbon-containing gas atmosphere showed significant improvement in silicon quality. Baseline solar cells from dendritic webs of various runs indicated that the quality of the webs under investigation was not as good as the conventional CZ silicon, showing an average minority carrier diffusion length of about 60 um versus 120 um of CZ wafers. Detail evaluation of large cast ingots by HEM showed ingot reproducibility problems from run to run and uniformity problems of sheet quality within an ingot. Initial evaluation of the wafers prepared from the cast polycrystalline ingots by UCP suggested that the quality of the wafers from this process is considerably lower than the conventional CZ wafers. Overall performance was relatively uniform, except for a few cells which showed shunting problems caused by inclusions
Studying Diquark Structure of Heavy Baryons in Relativistic Heavy Ion Collisions
We propose the enhancement of yield in heavy ion collisions at
RHIC and LHC as a novel signal for the existence of diquarks in the strongly
coupled quark-gluon plasma produced in these collisions as well as in the
. Assuming that stable bound diquarks can exist in the quark-gluon
plasma, we argue that the yield of would be increased by two-body
collisions between diquarks and quarks, in addition to normal
three-body collisions among , and quarks. A quantitative study of
this effect based on the coalescence model shows that including the
contribution of diquarks to production indeed leads to a
substantial enhancement of the ratio in heavy ion collisions.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics
(Chiral07), Nov. 13-16, 2007, Osaka, Japa
Control of carbon nanotube morphology by change of applied bias field during growth
Carbon nanotube morphology has been engineered via simple control of applied voltage during dc plasma chemical vapor deposition growth. Below a critical applied voltage, a nanotube configuration of vertically aligned tubes with a constant diameter is obtained. Above the critical voltage, a nanocone-type configuration is obtained. The strongly field-dependent transition in morphology is attributed primarily to the plasma etching and decrease in the size of nanotube-nucleating catalyst particles. A two-step control of applied voltage allows a creation of dual-structured nanotube morphology consisting of a broad base nanocone (~200 nm dia.) with a small diameter nanotube (~7 nm) vertically emanating from the apex of the nanocone, which may be useful for atomic force microscopy
Magnetic levitation force between a superconducting bulk magnet and a permanent magnet
The current density in a disk-shaped superconducting bulk magnet and the
magnetic levitation force exerted on the superconducting bulk magnet by a
cylindrical permanent magnet are calculated from first principles. The effect
of the superconducting parameters of the superconducting bulk is taken into
account by assuming the voltage-current law and the material law. The magnetic
levitation force is dominated by the remnant current density, which is induced
by switching off the applied magnetizing field. High critical current density
and flux creep exponent may increase the magnetic levitation force. Large
volume and high aspect ratio of the superconducting bulk can enhance the
magnetic levitation force further.Comment: 18 pages and 8 figure
Bound states of edge dislocations: The quantum dipole problem in two dimensions
We investigate bound state solutions of the 2D Schr\"odinger equation with a
dipole potential originating from the elastic effects of a single edge
dislocation. The knowledge of these states could be useful for understanding a
wide variety of physical systems, including superfluid behavior along
dislocations in solid He. We present a review of the results obtained by
previous workers together with an improved variational estimate of the ground
state energy. We then numerically solve the eigenvalue problem and calculate
the energy spectrum. In our dimensionless units, we find a ground state energy
of -0.139, which is lower than any previous estimate. We also make successful
contact with the behavior of the energy spectrum as derived from semiclassical
considerations.Comment: 6 pages, 3 figures, submitted to PR
Cluster Algorithms for Quantum Impurity Models and Mesoscopic Kondo Physics
Nanoscale physics and dynamical mean field theory have both generated
increased interest in complex quantum impurity problems and so have focused
attention on the need for flexible quantum impurity solvers. Here we
demonstrate that the mapping of single quantum impurity problems onto
spin-chains can be exploited to yield a powerful and extremely flexible
impurity solver. We implement this cluster algorithm explicitly for the
Anderson and Kondo Hamiltonians, and illustrate its use in the ``mesoscopic
Kondo problem''. To study universal Kondo physics, a large ratio between the
effective bandwidth and the temperature is required; our
cluster algorithm treats the mesoscopic fluctuations exactly while being able
to approach the large limit with ease. We emphasize that the
flexibility of our method allows it to tackle a wide variety of quantum
impurity problems; thus, it may also be relevant to the dynamical mean field
theory of lattice problems.Comment: 4 pages, 3 figure
Dislocation-induced superfluidity in a model supersolid
Motivated by recent experiments on the supersolid behavior of He, we
study the effect of an edge dislocation in promoting superfluidity in a Bose
crystal. Using Landau theory, we couple the elastic strain field of the
dislocation to the superfluid density, and use a linear analysis to show that
superfluidity nucleates on the dislocation before occurring in the bulk of the
solid. Moving beyond the linear analysis, we develop a systematic perturbation
theory in the weakly nonlinear regime, and use this method to integrate out
transverse degrees of freedom and derive a one-dimensional Landau equation for
the superfluid order parameter. We then extend our analysis to a network of
dislocation lines, and derive an XY model for the dislocation network by
integrating over fluctuations in the order parameter. Our results show that the
ordering temperature for the network has a sensitive dependence on the
dislocation density, consistent with numerous experiments that find a clear
connection between the sample quality and the supersolid response.Comment: 10 pages, 6 figure
- …