1,350 research outputs found

    Towards spin injection from silicon into topological insulators: Schottky barrier between Si and Bi2Se3

    Full text link
    A scheme is proposed to electrically measure the spin-momentum coupling in the topological insulator surface state by injection of spin polarized electrons from silicon. As a first approach, devices were fabricated consisting of thin (<100nm) exfoliated crystals of Bi2Se3 on n-type silicon with independent electrical contacts to silicon and Bi2Se3. Analysis of the temperature dependence of thermionic emission in reverse bias indicates a barrier height of 0.34 eV at the Si-Bi2Se3 interface. This robust Schottky barrier opens the possibility of novel device designs based on sub-band gap internal photoemission from Bi2Se3 into Si

    Monte Carlo modeling of spin injection through a Schottky barrier and spin transport in a semiconductor quantum well

    Full text link
    We develop a Monte Carlo model to study injection of spin-polarized electrons through a Schottky barrier from a ferromagnetic metal contact into a non-magnetic low-dimensional semiconductor structure. Both mechanisms of thermionic emission and tunneling injection are included in the model. Due to the barrier shape, the injected electrons are non-thermalized. Spin dynamics in the semiconductor heterostructure is controlled by the Rashba and Dresselhaus spin-orbit interactions and described by a single electron spin density matrix formalism. In addition to the linear term, the third order term in momentum for the Dresselhaus interaction is included. Effect of the Schottky potential on the spin dynamics in a 2 dimensional semiconductor device channel is studied. It is found that the injected current can maintain substantial spin polarization to a length scale in the order of 1 micrometer at room temperature without external magnetic fields.Comment: 18 pages, 4 figures, J. Appl. Phys., accepted for publicatio

    Oxaliplatin-based chemotherapy combined with traditional medicines for neutropenia in colorectal cancer: A meta-analysis of the contributions of specific plants

    Get PDF
    This review assessed the effects on chemotherapy induced neutropenia (CIN) of combining oxaliplatin regimens with traditional plant-based medicines (TMs) in the management of colorectal cancer (CRC). 32 RCTs (2224 participants) were included. Meta-analysis showed reduced incidence of grade 3/4 CIN (RR 0.45[0.31, 0.65], I-2 = 0%). No studies reported serious adverse events or reduction in tumour response rates associated with concurrent use of oxaliplatin and TM. Due to small sample sizes and risk of bias, these results should be interpreted with caution. Analyses of sub-groups of studies that used similar TM interventions assessed the relative contributions of individual plant-based ingredients to the results. Astragalus, Codonopsis, Atractylodes, Poria and Coix, in various combinations were consistently associated with reduced CIN incidence when administered orally. Experimental studies of these plants have reported reduced myelosuppression and/or enhanced immune response. Further studies of these plants may lead to the development of interventions to supplement conventional CIN treatment

    Pressure effects on the transport coefficients of Ba(Fe1-xCox)2As2

    Full text link
    We report the temperature dependence of the resistivity and thermoelectric power under hydrostatic pressure of the itinerant antiferromagnet BaFe2As2 and the electron-doped superconductor Ba(Fe0.9Co0.1)2As2. We observe a hole-like contribution to the thermopower below the structural-magnetic transition in the parent compound that is suppressed in magnitude and temperature with pressure. Pressure increases the contribution of electrons to transport in both the doped and undoped compound. In the 10% Co-doped sample, we used a two-band model for thermopower to estimate the carrier concentrations and determine the effect of pressure on the band structure

    Spin transport theory in ferromagnet/semiconductor systems with non-collinear magnetization configurations

    Full text link
    We present a comprehensive theory of spin transport in a non-degenerate semiconductor that is in contact with multiple ferromagnetic terminals. The spin dynamics in the semiconductor is studied during a perturbation of a general, non-collinear magnetization configuration and a method is shown to identify the various configurations from current signals. The conventional Landauer-B\"{u}ttiker description for spin transport across Schottky contacts is generalized by the use of a non-linearized I-V relation, and it is extended by taking into account non-coherent transport mechanisms. The theory is used to analyze a three terminal lateral structure where a significant difference in the spin accumulation profile is found when comparing the results of this model with the conventional model.Comment: 17 pages, 10 figure

    Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface

    Full text link
    We present a closed description of the charge carrier injection process from a conductor into an insulator. Common injection models are based on single electron descriptions, being problematic especially once the amount of charge-carriers injected is large. Accordingly, we developed a model, which incorporates space charge effects in the description of the injection process. The challenge of this task is the problem of self-consistency. The amount of charge-carriers injected per unit time strongly depends on the energy barrier emerging at the contact, while at the same time the electrostatic potential generated by the injected charge- carriers modifies the height of this injection barrier itself. In our model, self-consistency is obtained by assuming continuity of the electric displacement and the electrochemical potential all over the conductor/insulator system. The conductor and the insulator are properly taken into account by means of their respective density of state distributions. The electric field distributions are obtained in a closed analytical form and the resulting current-voltage characteristics show that the theory embraces injection-limited as well as bulk-limited charge-carrier transport. Analytical approximations of these limits are given, revealing physical mechanisms responsible for the particular current-voltage behavior. In addition, the model exhibits the crossover between the two limiting cases and determines the validity of respective approximations. The consequences resulting from our exactly solvable model are discussed on the basis of a simplified indium tin oxide/organic semiconductor system.Comment: 23 pages, 6 figures, accepted to Phys.Rev.

    Charge carrier injection into insulating media: single-particle versus mean-field approach

    Full text link
    Self-consistent, mean-field description of charge injection into a dielectric medium is modified to account for discreteness of charge carriers. The improved scheme includes both the Schottky barrier lowering due to the individual image charge and the barrier change due to the field penetration into the injecting electrode that ensures validity of the model at both high and low injection rates including the barrier dominated and the space-charge dominated regimes. Comparison of the theory with experiment on an unipolar ITO/PPV/Au-device is presented.Comment: 32 pages, 9 figures; revised version accepted to PR

    Extended description of tunnel junctions for distributed modeling of concentrator multi-junction solar cells

    Get PDF
    One of the key components of highly efficient multi-junction concentrator solar cells is the tunnel junction interconnection. In this paper, an improved 3D distributed model is presented that considers real operation regimes in a tunnel junction. This advanced model is able to accurately simulate the operation of the solar cell at high concentraions at which the photogenerated current surpasses the peak current of the tunnel junctionl Simulations of dual-junction solar cells were carried out with the improved model to illustrate its capabilities and the results have been correlated with experimental data reported in the literature. These simulations show that under certain circumstances, the solar cells short circuit current may be slightly higher than the tunnel junction peak current without showing the characteristic dip in the J-V curve. This behavior is caused by the lateral current spreading toward dark regions, which occurs through the anode/p-barrier of the tunnel junction

    Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics

    Get PDF
    An n(++)-GaAs/p(++)-AlGaAs tunnel junction with a peak current density of 10 100Acm(-2) is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500Acm(-2) and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations

    Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier

    Full text link
    We suggest a consistent microscopic theory of spin injection from a ferromagnet (FM) into a semiconductor (S). It describes tunneling and emission of electrons through modified FM-S Schottky barrier with an ultrathin heavily doped interfacial S layer . We calculate nonlinear spin-selective properties of such a reverse-biased FM-S junction, its nonlinear I-V characteristic, current saturation, and spin accumulation in S. We show that the spin polarization of current, spin density, and penetration length increase with the total current until saturation. We find conditions for most efficient spin injection, which are opposite to the results of previous works, since the present theory suggests using a lightly doped resistive semiconductor. It is shown that the maximal spin polarizations of current and electrons (spin accumulation) can approach 100% at room temperatures and low current density in a nondegenerate high-resistance semiconductor.Comment: 7 pages, 2 figures; provides detailed comparison with earlier works on spin injectio
    corecore