1,350 research outputs found
Towards spin injection from silicon into topological insulators: Schottky barrier between Si and Bi2Se3
A scheme is proposed to electrically measure the spin-momentum coupling in
the topological insulator surface state by injection of spin polarized
electrons from silicon. As a first approach, devices were fabricated consisting
of thin (<100nm) exfoliated crystals of Bi2Se3 on n-type silicon with
independent electrical contacts to silicon and Bi2Se3. Analysis of the
temperature dependence of thermionic emission in reverse bias indicates a
barrier height of 0.34 eV at the Si-Bi2Se3 interface. This robust Schottky
barrier opens the possibility of novel device designs based on sub-band gap
internal photoemission from Bi2Se3 into Si
Monte Carlo modeling of spin injection through a Schottky barrier and spin transport in a semiconductor quantum well
We develop a Monte Carlo model to study injection of spin-polarized electrons
through a Schottky barrier from a ferromagnetic metal contact into a
non-magnetic low-dimensional semiconductor structure. Both mechanisms of
thermionic emission and tunneling injection are included in the model. Due to
the barrier shape, the injected electrons are non-thermalized. Spin dynamics in
the semiconductor heterostructure is controlled by the Rashba and Dresselhaus
spin-orbit interactions and described by a single electron spin density matrix
formalism. In addition to the linear term, the third order term in momentum for
the Dresselhaus interaction is included. Effect of the Schottky potential on
the spin dynamics in a 2 dimensional semiconductor device channel is studied.
It is found that the injected current can maintain substantial spin
polarization to a length scale in the order of 1 micrometer at room temperature
without external magnetic fields.Comment: 18 pages, 4 figures, J. Appl. Phys., accepted for publicatio
Oxaliplatin-based chemotherapy combined with traditional medicines for neutropenia in colorectal cancer: A meta-analysis of the contributions of specific plants
This review assessed the effects on chemotherapy induced neutropenia (CIN) of combining oxaliplatin regimens with traditional plant-based medicines (TMs) in the management of colorectal cancer (CRC). 32 RCTs (2224 participants) were included. Meta-analysis showed reduced incidence of grade 3/4 CIN (RR 0.45[0.31, 0.65], I-2 = 0%). No studies reported serious adverse events or reduction in tumour response rates associated with concurrent use of oxaliplatin and TM. Due to small sample sizes and risk of bias, these results should be interpreted with caution. Analyses of sub-groups of studies that used similar TM interventions assessed the relative contributions of individual plant-based ingredients to the results. Astragalus, Codonopsis, Atractylodes, Poria and Coix, in various combinations were consistently associated with reduced CIN incidence when administered orally. Experimental studies of these plants have reported reduced myelosuppression and/or enhanced immune response. Further studies of these plants may lead to the development of interventions to supplement conventional CIN treatment
Pressure effects on the transport coefficients of Ba(Fe1-xCox)2As2
We report the temperature dependence of the resistivity and thermoelectric
power under hydrostatic pressure of the itinerant antiferromagnet BaFe2As2 and
the electron-doped superconductor Ba(Fe0.9Co0.1)2As2. We observe a hole-like
contribution to the thermopower below the structural-magnetic transition in the
parent compound that is suppressed in magnitude and temperature with pressure.
Pressure increases the contribution of electrons to transport in both the doped
and undoped compound. In the 10% Co-doped sample, we used a two-band model for
thermopower to estimate the carrier concentrations and determine the effect of
pressure on the band structure
Spin transport theory in ferromagnet/semiconductor systems with non-collinear magnetization configurations
We present a comprehensive theory of spin transport in a non-degenerate
semiconductor that is in contact with multiple ferromagnetic terminals. The
spin dynamics in the semiconductor is studied during a perturbation of a
general, non-collinear magnetization configuration and a method is shown to
identify the various configurations from current signals. The conventional
Landauer-B\"{u}ttiker description for spin transport across Schottky contacts
is generalized by the use of a non-linearized I-V relation, and it is extended
by taking into account non-coherent transport mechanisms. The theory is used to
analyze a three terminal lateral structure where a significant difference in
the spin accumulation profile is found when comparing the results of this model
with the conventional model.Comment: 17 pages, 10 figure
Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface
We present a closed description of the charge carrier injection process from
a conductor into an insulator. Common injection models are based on single
electron descriptions, being problematic especially once the amount of
charge-carriers injected is large. Accordingly, we developed a model, which
incorporates space charge effects in the description of the injection process.
The challenge of this task is the problem of self-consistency. The amount of
charge-carriers injected per unit time strongly depends on the energy barrier
emerging at the contact, while at the same time the electrostatic potential
generated by the injected charge- carriers modifies the height of this
injection barrier itself. In our model, self-consistency is obtained by
assuming continuity of the electric displacement and the electrochemical
potential all over the conductor/insulator system. The conductor and the
insulator are properly taken into account by means of their respective density
of state distributions. The electric field distributions are obtained in a
closed analytical form and the resulting current-voltage characteristics show
that the theory embraces injection-limited as well as bulk-limited
charge-carrier transport. Analytical approximations of these limits are given,
revealing physical mechanisms responsible for the particular current-voltage
behavior. In addition, the model exhibits the crossover between the two
limiting cases and determines the validity of respective approximations. The
consequences resulting from our exactly solvable model are discussed on the
basis of a simplified indium tin oxide/organic semiconductor system.Comment: 23 pages, 6 figures, accepted to Phys.Rev.
Charge carrier injection into insulating media: single-particle versus mean-field approach
Self-consistent, mean-field description of charge injection into a dielectric
medium is modified to account for discreteness of charge carriers. The improved
scheme includes both the Schottky barrier lowering due to the individual image
charge and the barrier change due to the field penetration into the injecting
electrode that ensures validity of the model at both high and low injection
rates including the barrier dominated and the space-charge dominated regimes.
Comparison of the theory with experiment on an unipolar ITO/PPV/Au-device is
presented.Comment: 32 pages, 9 figures; revised version accepted to PR
Extended description of tunnel junctions for distributed modeling of concentrator multi-junction solar cells
One of the key components of highly efficient multi-junction concentrator solar cells is the tunnel junction interconnection. In this paper, an improved 3D distributed model is presented that considers real operation regimes in a tunnel junction. This advanced model is able to accurately simulate the operation of the solar cell at high concentraions at which the photogenerated current surpasses the peak current of the tunnel junctionl Simulations of dual-junction solar cells were carried out with the improved model to illustrate its capabilities and the results have been correlated with experimental data reported in the literature. These simulations show that under certain circumstances, the solar cells short circuit current may be slightly higher than the tunnel junction peak current without showing the characteristic dip in the J-V curve. This behavior is caused by the lateral current spreading toward dark regions, which occurs through the anode/p-barrier of the tunnel junction
Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics
An n(++)-GaAs/p(++)-AlGaAs tunnel junction with a peak current density of 10 100Acm(-2) is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500Acm(-2) and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations
Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier
We suggest a consistent microscopic theory of spin injection from a
ferromagnet (FM) into a semiconductor (S). It describes tunneling and emission
of electrons through modified FM-S Schottky barrier with an ultrathin heavily
doped interfacial S layer . We calculate nonlinear spin-selective properties of
such a reverse-biased FM-S junction, its nonlinear I-V characteristic, current
saturation, and spin accumulation in S. We show that the spin polarization of
current, spin density, and penetration length increase with the total current
until saturation. We find conditions for most efficient spin injection, which
are opposite to the results of previous works, since the present theory
suggests using a lightly doped resistive semiconductor. It is shown that the
maximal spin polarizations of current and electrons (spin accumulation) can
approach 100% at room temperatures and low current density in a nondegenerate
high-resistance semiconductor.Comment: 7 pages, 2 figures; provides detailed comparison with earlier works
on spin injectio
- …