7,443 research outputs found

    Cosmological and Solar-System Tests of f(R) Modified Gravity

    Full text link
    We investigate the cosmological and the local tests of the f(R) theory of modified gravity via the observations of (1) the cosmic expansion and (2) the cosmic structures and via (3) the solar-system experiments. To fit the possible cosmic expansion histories under consideration, for each of them we reconstruct f(R), known as "designer f(R)". We then test the designer f(R) via the cosmic-structure constraints on the metric perturbation ratio Psi/Phi and the effective gravitational coupling G_eff and via the solar-system constraints on the Brans-Dicke theory with the chameleon mechanism. We find that among the designer f(R) models specified by the CPL effective equation of state w_eff, only the model closely mimicking general relativity with a cosmological constant (LambdaCDM) can survive all the tests. Accordingly, these tests rule out the frequently studied "w_eff = -1" designer f(R) models which are distinct in cosmic structures from LambdaCDM. When considering only the cosmological tests, we find that the surviving designer f(R) models, although exist for a variety of w_eff, entail fine-tuning.Comment: 22 pages, 9 figures, LaTe

    Implications of the X-ray Variability for the Mass of MCG-6-30-15

    Get PDF
    The bright Seyfert 1 galaxy \mcg shows large variability on a variety of time scales. We study the \aproxlt 3 day time scale variability using a set of simultaneous archival observations that were obtained from \rxte and the {\it Advanced Satellite for Cosmology and Astrophysics} (\asca). The \rxte\ observations span nearly 10610^6 sec and indicate that the X-ray Fourier Power Spectral Density has an rms variability of 16%, is flat from approximately 10^{-6} - 10^{-5} Hz, and then steepens into a power law fα\propto f^{-\alpha} with \alpha\aproxgt 1. A further steepening to α2\alpha \approx 2 occurs between 10^{-4}-10^{-3} Hz. The shape and rms amplitude are comparable to what has been observed in \ngc and \cyg, albeit with break frequencies that differ by a factor of 10^{-2} and 10^{4}, respectively. If the break frequencies are indicative of the central black hole mass, then this mass may be as low as 106M10^6 {\rm M}_\odot. An upper limit of 2\sim 2 ks for the relative lag between the 0.5-2 keV \asca band compared to the 8-15 keV \rxte band was also found. Again by analogy with \ngc and \cyg, this limit is consistent with a relatively low central black hole mass.Comment: 5 pages, 3 figures, LaTeX, uses emulateapj.sty and apjfonts.sty, revised version, accepted for publication in ApJ Letter

    Aspects of Horava-Lifshitz cosmology

    Full text link
    We review some general aspects of Horava-Lifshitz cosmology. Formulating it in its basic version, we extract the cosmological equations and we use observational data in order to constrain the parameters of the theory. Through a phase-space analysis we extract the late-time stable solutions, and we show that eternal expansion, and bouncing and cyclic behavior can arise naturally. Concerning the effective dark energy sector we show that it can describe the phantom phase without the use of a phantom field. However, performing a detailed perturbation analysis, we see that Horava-Lifshitz gravity in its basic version suffers from instabilities. Therefore, suitable generalizations are required in order for this novel theory to be a candidate for the description of nature.Comment: 10 pages, 4 figures, invited talk given at the 2nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Assymetry, National Tsing Hua University, Hsinchu, Taiwan, November 5-6, 201

    Hitting Time of Quantum Walks with Perturbation

    Full text link
    The hitting time is the required minimum time for a Markov chain-based walk (classical or quantum) to reach a target state in the state space. We investigate the effect of the perturbation on the hitting time of a quantum walk. We obtain an upper bound for the perturbed quantum walk hitting time by applying Szegedy's work and the perturbation bounds with Weyl's perturbation theorem on classical matrix. Based on the definition of quantum hitting time given in MNRS algorithm, we further compute the delayed perturbed hitting time (DPHT) and delayed perturbed quantum hitting time (DPQHT). We show that the upper bound for DPQHT is actually greater than the difference between the square root of the upper bound for a perturbed random walk and the square root of the lower bound for a random walk.Comment: 9 page

    Bose-Einstein condensation in an optical lattice: A perturbation approach

    Full text link
    We derive closed analytical expressions for the order parameter Φ(x)\Phi (x) and for the chemical potential μ\mu of a Bose-Einstein Condensate loaded into a harmonically confined, one dimensional optical lattice, for sufficiently weak, repulsive or attractive interaction, and not too strong laser intensities. Our results are compared with exact numerical calculations in order to map out the range of validity of the perturbative analytical approach. We identify parameter values where the optical lattice compensates the interaction-induced nonlinearity, such that the condensate ground state coincides with a simple, single particle harmonic oscillator wave function

    Dynamic Resonance Effects in the Statistical Distributions of Asteroids and Comets

    Full text link
    Some principles in the distribution of Centaurs and the "Scattered Disk" objects, as well as the Kuiper belt objects for its semi-major axes, eccentricities and inclinations of the orbits have been investigated. It has been established, that more than a half from them move on the resonant orbits and that is what has been predicted earlier. The divergence of the maximum in the observable distribution of the objects of the Kuiper belt for the semi-major axes with an exact orbital resonance has been interpreted.Comment: 7 pages, 5 figures, 1 table. International Conference "100 years since Tunguska phenomenon: Past, present and future", (June 26-28, 2008. Russia, Moscow), International Conference "Modern problems of astronomy" (August 12-18, 2007, Ukraine, Odessa

    Increased Risk of Respiratory Mortality Associated with the High-Tech Manufacturing Industry: A 26-Year Study

    Get PDF
    Global high-tech manufacturers are mainly located in newly industrialized countries, raising concerns about adverse health consequences from industrial pollution for people living nearby. We investigated the ecological association between respiratory mortality and the development of Taiwan's high-tech manufacturing, taking into account industrialization and socioeconomic development, for 19 cities and counties-6 in the science park group and 13 in the control group-from 1982 to 2007. We applied a linear mixed-effects model to analyze how science park development over time is associated with age-adjusted and sex-specific mortality rates for asthma and chronic obstructive pulmonary disease (COPD). Asthma and female COPD mortality rates decreased in both groups, but they decreased 9%-16% slower in the science park group. Male COPD mortality rates increased in both groups, but the rate increased 10% faster in the science park group. Science park development over time was a significant predictor of death from asthma (p ≤ 0.0001) and COPD (p = 0.0212). The long-term development of clustered high-tech manufacturing may negatively affect nearby populations, constraining health advantages that were anticipated, given overall progress in living standards, knowledge, and health services. National governments should incorporate the long-term health effects on local populations into environmental impact assessments

    Development and Bias Assessment of a Method for Targeted Metagenomic Sequencing of Marine Cyanobacteria

    Get PDF
    Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms in oligotrophic waters and responsible for a significant percentage of the earth's primary production. Here we developed a method for metagenomic sequencing of sorted Prochlorococcus and Synechococcus populations using a transposon-based library preparation technique. First, we observed that the cell lysis technique and associated amount of input DNA had an important role in determining the DNA library quality. Second, we found that our transposon-based method provided a more even coverage distribution and matched more sequences of a reference genome than multiple displacement amplification, a commonly used method for metagenomic sequencing. We then demonstrated the method on Prochlorococcus and Synechococcus field populations from the Sargasso Sea and California Current isolated by flow cytometric sorting and found clear environmentally related differences in ecotype distributions and gene abundances. In addition, we saw a significant correspondence between metagenomic libraries sequenced with our technique and regular sequencing of bulk DNA. Our results show that this targeted method is a viable replacement for regular metagenomic approaches and will be useful for identifying the biogeography and genome content of specific marine cyanobacterial populations

    Crystallization of Adenylylsulfate Reductase from Desulfovibrio gigas: A Strategy Based on Controlled Protein Oligomerization

    Get PDF
    Adenylylsulfate reductase (adenosine 5′-phosphosulfate reductase, APS reductase or APSR, E.C.1.8.99.2) catalyzes the conversion of APS to sulfite in dissimilatory sulfate reduction. APSR was isolated and purified directly from massive anaerobically grown Desulfovibrio gigas, a strict anaerobe, for structure and function investigation. Oligomerization of APSR to form dimers–α_2β_2, tetramers–α_4β_4, hexamers–α_6β_6, and larger oligomers was observed during purification of the protein. Dynamic light scattering and ultracentrifugation revealed that the addition of adenosine monophosphate (AMP) or adenosine 5′-phosphosulfate (APS) disrupts the oligomerization, indicating that AMP or APS binding to the APSR dissociates the inactive hexamers into functional dimers. Treatment of APSR with β-mercaptoethanol decreased the enzyme size from a hexamer to a dimer, probably by disrupting the disulfide Cys156—Cys162 toward the C-terminus of the β-subunit. Alignment of the APSR sequences from D. gigas and A. fulgidus revealed the largest differences in this region of the β-subunit, with the D. gigas APSR containing 16 additional amino acids with the Cys156—Cys162 disulfide. Studies in a pH gradient showed that the diameter of the APSR decreased progressively with acidic pH. To crystallize the APSR for structure determination, we optimized conditions to generate a homogeneous and stable form of APSR by combining dynamic light scattering, ultracentrifugation, and electron paramagnetic resonance methods to analyze the various oligomeric states of the enzyme in varied environments

    Spectral Energy Distributions of T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with ISO LWS Observations

    Get PDF
    We improve upon the radiative, hydrostatic equilibrium models of passive circumstellar disks constructed by Chiang & Goldreich (1997). New features include (1) account for a range of particle sizes, (2) employment of laboratory-based optical constants of representative grain materials, and (3) numerical solution of the equations of radiative and hydrostatic equilibrium within the original 2-layer (disk surface + disk interior) approximation. We explore how the spectral energy distribution (SED) of a face-on disk depends on grain size distributions, disk geometries and surface densities, and stellar photospheric temperatures. Observed SEDs of 3 Herbig Ae and 2 T Tauri stars, including spectra from the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO), are fitted with our models. Silicate emission bands from optically thin, superheated disk surface layers appear in nearly all systems. Water ice emission bands appear in LWS spectra of 2 of the coolest stars. Infrared excesses in several sources are consistent with vertical settling of photospheric grains. While this work furnishes further evidence that passive reprocessing of starlight by flared disks adequately explains the origin of infrared-to-millimeter wavelength excesses of young stars, we emphasize how the SED alone does not provide sufficient information to constrain particle sizes and disk masses uniquely.Comment: Accepted to ApJ, 35 pages inc. 14 figures, AAS preprin
    corecore