189,301 research outputs found

    Aharonov-Bohm oscillations in the local density of states

    Full text link
    The scattering of electrons with inhomogeneities produces modulations in the local density of states of a metal. We show that electron interference contributions to these modulations are affected by the magnetic field via the Aharonov-Bohm effect. This can be exploited in a simple STM setup that serves as an Aharonov-Bohm interferometer at the nanometer scale.Comment: 4 pages, 2 figures. v2 added reference

    Growth of aligned carbon nanotubes on carbon microfibers by dc plasma-enhanced chemical vapor deposition

    Get PDF
    It is shown that unidirectionally aligned carbon nanotubes can be grown on electrically conductive network of carbon microfibers via control of buffer layer material and applied electric field during dc plasma chemical vapor deposition growth. Ni catalyst deposition on carbon microfiber produces relatively poorly aligned nanotubes with significantly varying diameters and lengths obtained. The insertion of Ti 5 nm thick underlayer between Ni catalyst layer and C microfiber substrate significantly alters the morphology of nanotubes, resulting in much better aligned, finer diameter, and longer array of nanotubes. This beneficial effect is attributed to the reduced reaction between Ni and carbon paper, as well as prevention of plasma etching of carbon paper by inserting a Ti buffer layer. Such a unidirectionally aligned nanotube structure on an open-pore conductive substrate structure may conveniently be utilized as a high-surface-area base electrodes for fuel cells, batteries, and other electrochemical and catalytic reactions

    Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra

    Get PDF
    A comprehensive quantitative rescattering (QRS) theory for describing the production of high-energy photoelectrons generated by intense laser pulses is presented. According to the QRS, the momentum distributions of these electrons can be expressed as the product of a returning electron wave packet with the elastic differential cross sections (DCS) between free electrons with the target ion. We show that the returning electron wave packets are determined mostly by the lasers only, and can be obtained from the strong field approximation. The validity of the QRS model is carefully examined by checking against accurate results from the solution of the time-dependent Schr\"odinger equation for atomic targets within the single active electron approximation. We further show that experimental photoelectron spectra for a wide range of laser intensity and wavelength can be explained by the QRS theory, and that the DCS between electrons and target ions can be extracted from experimental photoelectron spectra. By generalizing the QRS theory to molecular targets, we discuss how few-cycle infrared lasers offer a promising tool for dynamic chemical imaging with temporal resolution of a few femtoseconds.Comment: 19 pages, 19 figure

    Spectroscopic characterization of the oxo-transfer reaction from a bis(µ-oxo)dicopper(III) complex to triphenylphosphine

    Get PDF
    The oxygen-atom transfer reaction from the bis(µ-oxo)dicopper(III) complex [CuIII2(µ-O)2(L)2]2+1, where L =N,N,N,N -tetraethylethylenediamine, to PPh3 has been studied by UV-vis, EPR, 1H NMR and Cu K-edge X-ray absorption spectroscopy in parallel at low temperatures (193 K) and above. Under aerobic conditions (excess dioxygen), 1 reacted with PPh3, giving OPPh3 and a diamagnetic species that has been assigned to an oxo-bridged dicopper(II) complex on the basis of EPR and Cu K-edge X-ray absorption spectroscopic data. Isotope-labeling experiments (18O2) established that the oxygen atom incorporated into the triphenylphosphine oxide came from both complex 1 and exogenous dioxygen. Detailed kinetic studies revealed that the process is a third-order reaction; the rate law is first order in both complex 1 and triphenylphosphine, as well as in dioxygen. At temperatures above 233 K, reaction of 1 with PPh3 was accompanied by ligand degradation, leading to oxidative N-dealkylation of one of the ethyl groups. By contrast, when the reaction was performed in the absence of excess dioxygen, negligible substrate (PPh3) oxidation was observed. Instead, highly symmetrical copper complexes with a characteristic isotropic EPR signal at g= 2.11 were formed. These results are discussed in terms of parallel reaction channels that are activated under various conditions of temperature and dioxygen

    Ab initio study of electron transport in dry poly(G)-poly(C) A-DNA strands

    Full text link
    The bias-dependent transport properties of short poly(G)-poly(C) A-DNA strands attached to Au electrodes are investigated with first principles electronic transport methods. By using the non- equilibrium Green's function approach combined with self-interaction corrected density functional theory, we calculate the fully self-consistent coherent I-V curve of various double-strand polymeric DNA fragments. We show that electronic wave-function localization, induced either by the native electrical dipole and/or by the electrostatic disorder originating from the first few water solvation layers, drastically suppresses the magnitude of the elastic conductance of A-DNA oligonucleotides. We then argue that electron transport through DNA is the result of sequence-specific short-range tunneling across a few bases combined with general diffusive/inelastic processes.Comment: 15 pages, 13 figures, 1 tabl

    Theory of hopping conduction in arrays of doped semiconductor nanocrystals

    Full text link
    The resistivity of a dense crystalline array of semiconductor nanocrystals (NCs) depends in a sensitive way on the level of doping as well as on the NC size and spacing. The choice of these parameters determines whether electron conduction through the array will be characterized by activated nearest-neighbor hopping or variable-range hopping (VRH). Thus far, no general theory exists to explain how these different behaviors arise at different doping levels and for different types of NCs. In this paper we examine a simple theoretical model of an array of doped semiconductor NCs that can explain the transition from activated transport to VRH. We show that in sufficiently small NCs, the fluctuations in donor number from one NC to another provide sufficient disorder to produce charging of some NCs, as electrons are driven to vacate higher shells of the quantum confinement energy spectrum. This confinement-driven charging produces a disordered Coulomb landscape throughout the array and leads to VRH at low temperature. We use a simple computer simulation to identify different regimes of conduction in the space of temperature, doping level, and NC diameter. We also discuss the implications of our results for large NCs with external impurity charges and for NCs that are gated electrochemically.Comment: 14 pages, 10 figures; extra schematic figures added; revised introductio

    An econometric analysis of SARS and Avian flu on international tourist arrivals to Asia

    Get PDF
    This paper compares the impacts of SARS and human deaths arising from Avian Flu on international tourist arrivals to Asia. The effects of SARS and human deaths from Avian Flu will be compared directly according to human deaths. The nature of the short run and long run relationship is examined empirically by estimating a static line fixed effect model and a difference transformation dynamic model, respectively. Empirical results from the static fixed effect and difference transformation dynamic models are consistent, and indicate that both the short run and long run SARS effect have a more significant impact on international tourist arrivals than does Avian Flu. In addition, the effects of deaths arising from both SARS and Avian Flu suggest that SARS is more important to international tourist arrivals than is Avian Flu. Thus, while Avian Flu is here to stay, its effect is currently not as significant as that of SARS.Avian flu;international tourism;SARS;dynamic panel data model;static fixed effects model

    Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation

    Get PDF
    We present a further theoretical extension to the kinetic theory based formulation of the lattice Boltzmann method of Shan et al (2006). In addition to the higher order projection of the equilibrium distribution function and a sufficiently accurate Gauss-Hermite quadrature in the original formulation, a new regularization procedure is introduced in this paper. This procedure ensures a consistent order of accuracy control over the non-equilibrium contributions in the Galerkin sense. Using this formulation, we construct a specific lattice Boltzmann model that accurately incorporates up to the third order hydrodynamic moments. Numerical evidences demonstrate that the extended model overcomes some major defects existed in the conventionally known lattice Boltzmann models, so that fluid flows at finite Knudsen number (Kn) can be more quantitatively simulated. Results from force-driven Poiseuille flow simulations predict the Knudsen's minimum and the asymptotic behavior of flow flux at large Kn

    Are Giant Planets Forming Around HR 4796A?

    Full text link
    We have obtained FUSE and HST STIS spectra of HR 4796A, a nearby 8 Myr old main sequence star that possesses a dusty circumstellar disk whose inclination has been constrained from high resolution near-infrared observations to be ~17 deg from edge-on. We searched for circumstellar absorption in the ground states of C II at 1036.3 A, O I at 1039.2 A, Zn II at 2026.1 A, Lyman series H2, and CO (A-X) and failed to detect any of these species. We place upper limits on the column densities and infer upper limits on the gas masses assuming that the gas is in hydrostatic equilibrium, is well-mixed, and has a temperature, Tgas ~ 65 K. Our measurements suggest that this system possesses very little molecular gas. Therefore, we infer an upper limit for the gas:dust ratio (<4.0) assuming that the gas is atomic. We measure less gas in this system than is required to form the envelope of Jupiter.Comment: 10 pages, 3 figures (including 1 color figure), accepted for publication in Ap
    corecore