95 research outputs found

    The structure of glycolate oxidase from spinach

    Full text link

    Protein engineering of rubisco

    Full text link

    Structural Dynamic of a Self-Assembling Peptide d-EAK16 Made of Only D-Amino Acids

    Get PDF
    We here report systematic study of structural dynamics of a 16-residue self-assembling peptide d-EAK16 made of only D-amino acids. We compare these results with its chiral counterpart L-form, l-EAK16. Circular dichroism was used to follow the structural dynamics under various temperature and pH conditions. At 25°C the d-EAK16 peptide displayed a typical beta-sheet spectrum. Upon increasing the temperature above 70°C, there was a spectrum shift as the 218 nm valley widens toward 210 nm. Above 80°C, the d-EAK16 peptide transformed into a typical alpha-helix CD spectrum without going through a detectable random-coil intermediate. When increasing the temperature from 4°C to 110°C then cooling back from 110°C to 4°C, there was a hysteresis: the secondary structure from beta-sheet to alpha-helix and then from alpha-helix to beta-sheet occurred. d-EAK16 formed an alpha-helical conformation at pH0.76 and pH12 but formed a beta-sheet at neutral pH. The effects of various pH conditions, ionic strength and denaturing agents were also noted. Since D-form peptides are resistant to natural enzyme degradation, such drastic structural changes may be exploited for fabricating molecular sensors to detect minute environmental changes. This provides insight into the behaviors of self-assembling peptides made of D-amino acids and points the way to designing new peptide materials for biomedical engineering and nanobiotechnology

    Homology modelling and spectroscopy, a never-ending love story

    Get PDF
    Homology modelling is normally the technique of choice when experimental structure data are not available but three-dimensional coordinates are needed, for example, to aid with detailed interpretation of results of spectroscopic studies. Herein, the state of the art of homology modelling will be described in the light of a series of recent developments, and an overview will be given of the problems and opportunities encountered in this field. The major topic, the accuracy and precision of homology models, will be discussed extensively due to its influence on the reliability of conclusions drawn from the combination of homology models and spectroscopic data. Three real-world examples will illustrate how both homology modelling and spectroscopy can be beneficial for (bio)medical research

    Peptide Bond Distortions from Planarity: New Insights from Quantum Mechanical Calculations and Peptide/Protein Crystal Structures

    Get PDF
    By combining quantum-mechanical analysis and statistical survey of peptide/protein structure databases we here report a thorough investigation of the conformational dependence of the geometry of peptide bond, the basic element of protein structures. Different peptide model systems have been studied by an integrated quantum mechanical approach, employing DFT, MP2 and CCSD(T) calculations, both in aqueous solution and in the gas phase. Also in absence of inter-residue interactions, small distortions from the planarity are more a rule than an exception, and they are mainly determined by the backbone ψ dihedral angle. These indications are fully corroborated by a statistical survey of accurate protein/peptide structures. Orbital analysis shows that orbital interactions between the σ system of Cα substituents and the π system of the amide bond are crucial for the modulation of peptide bond distortions. Our study thus indicates that, although long-range inter-molecular interactions can obviously affect the peptide planarity, their influence is statistically averaged. Therefore, the variability of peptide bond geometry in proteins is remarkably reproduced by extremely simplified systems since local factors are the main driving force of these observed trends. The implications of the present findings for protein structure determination, validation and prediction are also discussed

    A group-refinement program applied to the structure of myoglobin

    No full text
    • …
    corecore