31,738 research outputs found
Controlling internal barrier in low loss BaTiO3 supercapacitors
Supercapacitor behavior has been reported in a number of oxides including reduced BaTiO3 ferroelectric ceramics. These so-called giant properties are however not easily controlled. We show here that the continuous coating of individual BaTiO3 grains by a silica shell in combination with spark plasma sintering is a way to process bulk composites having supercapacitor features with low dielectric losses and temperature stability. The silica shell acts both as an oxidation barrier during the processing and as a dielectric barrier in the final composite
Fermion Production in Strong Magnetic Field and its Astrophysical Implications
We calculate the effective potential of a strong magnetic field induced by
fermions with anomalous magnetic moments which couple to the electromagnetic
field in the form of the Pauli interaction. For a uniform magnetic field, we
find the explicit form of the effective potential. It is found that the
non-vanishing imaginary part develops for a magnetic field stronger than a
critical field and has a quartic form which is quite different from the
exponential form of the Schwinger process. We also consider a linear magnetic
field configuration as an example of inhomogeneous magnetic fields. We find
that the imaginary part of the effective potential is nonzero even below the
critical field and shows an exponentially decreasing behavior with respect to
the inverse of the magnetic field gradient, which is the non-perturbative
characteristics analogous to the Schwinger process. These results imply the
instability of the strong magnetic field to produce fermion pairs as a purely
magnetic effect. The possible applications to the astrophysical phenomena with
strong magnetic field are also discussed.Comment: 13 pages, 3 figure
Real Estate Income and Value Cycles: A Model of Market Dynamics
We develop a theoretical real estate cycles model linking economic fundamentals to real estate income and value. We estimate and test an econometric model specification, based on the theoretical model, using MSA level data for twenty office markets in the United States. Our major conclusion is that cities that exhibit seemingly different cyclical office market behavior may be statistically characterized by our three-parameter econometric specification. The parameters are MSA-specific amplitude, through the CAP rate, cycle duration (peak-to-peak), via the rate of partial adjustments to changing expectations about stabilized NOI and the market trend.
Synthesis and Activity of Six-Membered Cyclic Alkyl Amino Carbene–Ruthenium Olefin Metathesis Catalysts
Ru–cyclic alkyl amino carbene (Ru–CAAC) olefin metathesis catalysts perform extraordinarily in metathesis macrocyclization and ethenolysis, but previous studies have been limited to the use of five-membered CAAC (CAAC-5) ligands. In this work, we synthesized a different group of ruthenium catalysts with more σ-donating and π-accepting six-membered CAAC (CAAC-6) ligands, and their metathesis activity was probed through initiation studies, ring-closing metathesis (RCM), cross-metathesis, and ethenolysis. These catalysts display higher initiation rates than analogous Ru–CAAC-5 complexes but demonstrate lower activity in RCM and ethenolysis
New Hamiltonian formalism and quasi-local conservation equations of general relativity
I describe the Einstein's gravitation of 3+1 dimensional spacetimes using the
(2,2) formalism without assuming isometries. In this formalism, quasi-local
energy, linear momentum, and angular momentum are identified from the four
Einstein's equations of the divergence-type, and are expressed geometrically in
terms of the area of a two-surface and a pair of null vector fields on that
surface. The associated quasi-local balance equations are spelled out, and the
corresponding fluxes are found to assume the canonical form of energy-momentum
flux as in standard field theories. The remaining non-divergence-type
Einstein's equations turn out to be the Hamilton's equations of motion, which
are derivable from the {\it non-vanishing} Hamiltonian by the variational
principle. The Hamilton's equations are the evolution equations along the
out-going null geodesic whose {\it affine} parameter serves as the time
function. In the asymptotic region of asymptotically flat spacetimes, it is
shown that the quasi-local quantities reduce to the Bondi energy, linear
momentum, and angular momentum, and the corresponding fluxes become the Bondi
fluxes. The quasi-local angular momentum turns out to be zero for any
two-surface in the flat Minkowski spacetime. I also present a candidate for
quasi-local {\it rotational} energy which agrees with the Carter's constant in
the asymptotic region of the Kerr spacetime. Finally, a simple relation between
energy-flux and angular momentum-flux of a generic gravitational radiation is
discussed, whose existence reflects the fact that energy-flux always
accompanies angular momentum-flux unless the flux is an s-wave.Comment: 36 pages, 3 figures, RevTex
Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects
We investigated a switchable ferroelectric diode effect and its physical
mechanism in Pt/BiFeO3/SrRuO3 thin-film capacitors. Our results of electrical
measurements support that, near the Pt/BiFeO3 interface of as-grown samples, a
defective layer (possibly, an oxygen-vacancy-rich layer) becomes formed and
disturbs carrier injection. We therefore used an electrical training process to
obtain ferroelectric control of the diode polarity where, by changing the
polarization direction using an external bias, we could switch the transport
characteristics between forward and reverse diodes. Our system is characterized
with a rectangular polarization hysteresis loop, with which we confirmed that
the diode polarity switching occurred at the ferroelectric coercive voltage.
Moreover, we observed a simultaneous switching of the diode polarity and the
associated photovoltaic response dependent on the ferroelectric domain
configurations. Our detailed study suggests that the polarization charge can
affect the Schottky barrier at the ferroelectric/metal interfaces, resulting in
a modulation of the interfacial carrier injection. The amount of
polarization-modulated carrier injection can affect the transition voltage
value at which a space-charge-limited bulk current-voltage (J-V) behavior is
changed from Ohmic (i.e., J ~ V) to nonlinear (i.e., J ~ V^n with n \geq 2).
This combination of bulk conduction and polarization-modulated carrier
injection explains the detailed physical mechanism underlying the switchable
diode effect in ferroelectric capacitors.Comment: Accepted for publication in Phys. Rev.
Impurities, Quantum Interference and Quantum Phase Transitions in s-wave superconductors
We study the effects of quantum interference in impurity structures
consisting of two or three magnetic impurities that are located on the surface
of an s-wave superconductor. By using a self-consistent Bogoliubov-de Gennes
formalism, we show that quantum interference leads to characteristic signatures
not only in the local density of states (LDOS), but also in the spatial form of
the superconducting order parameter. We demonstrate that the signatures of
quantum interference in the LDOS are qualitatively, and to a large extent
quantitatively unaffected by the suppression of the superconducting order
parameter near impurities, which illustrates the robustness of quantum
interference phenomena. Moreover, we show that by changing the interimpurity
distance, or the impurities' scattering strength, the s-wave superconductor can
be tuned through a series of first order quantum phase transitions in which the
spin polarization of its ground state changes. In contrast to the single
impurity case, this transition is not necessarily accompanied by a -phase
shift of the order parameter, and can in certain cases even lead to its
enhancement. Our results demonstrate that the superconductor's LDOS, its spin
state, and the spatial form of the superconducting order parameter are
determined by a subtle interplay between the relative positions of the
impurities and their scattering strength
- …
