18,775 research outputs found
A magnetically driven origin for the low luminosity GRB 170817A associated with GW170817
The gamma-ray burst GRB 170817A associated with GW170817 is subluminous and
subenergetic compared with other typical short GRBs. It may be due to a
relativistic jet viewed off-axis, or a structured jet, or cocoon emission.
Giant flares from magnetars may possibly be ruled out. However, the luminosity
and energetics of GRB 170817A is coincident with that of magnetar giant flares.
After the coalescence of the binary neutron star, a hypermassive neutron star
may be formed. The hypermassive neutron star may have magnetar-strength
magnetic field. During the collapse of the hypermassive neutron star, the
magnetic field energy will also be released. This giant-flare-like event may
explain the the luminosity and energetics of GRB 170817A. Bursts with similar
luminosity and energetics are expected in future neutron star-neutron star or
neutron star-black hole mergers.Comment: 6 pages, 1 figure, accepted in Research in Astronomy and Astrophysic
Entanglement distribution over the subsystems and its invariance
We study the entanglement dynamics of two qubits, each of which is embedded
into its local amplitude-damping reservoir, and the entanglement distribution
among all the bipartite subsystems including qubit-qubit, qubit-reservoir, and
reservoir-reservoir. It is found that the entanglement can be stably
distributed among all components, which is much different to the result
obtained under the Born-Markovian approximation by C. E. L\'{o}pez {\it et al.}
[Phys. Rev. Lett. \textbf{101}, 080503 (2008)], and particularly it also
satisfies an identity. Our unified treatment includes the previous results as
special cases. The result may give help to understand the physical nature of
entanglement under decoherence.Comment: 6 pages, 5 figure
Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed states
Off-diagonal geometric phases have been developed in order to provide
information of the geometry of paths that connect noninterfering quantal
states. We propose a kinematic approach to off-diagonal geometric phases for
pure and mixed states. We further extend the mixed state concept proposed in
[Phys. Rev. Lett. {\bf 90}, 050403 (2003)] to degenerate density operators. The
first and second order off-diagonal geometric phases are analyzed for unitarily
evolving pairs of pseudopure states.Comment: New section IV, new figure, journal ref adde
Kinematic approach to the mixed state geometric phase in nonunitary evolution
A kinematic approach to the geometric phase for mixed quantal states in
nonunitary evolution is proposed. This phase is manifestly gauge invariant and
can be experimentally tested in interferometry. It leads to well-known results
when the evolution is unitary.Comment: Minor changes; journal reference adde
- …