83,179 research outputs found

    Reversibility Checking for Markov Chains

    Get PDF
    In this paper, we present reversibility preserving operations on Markov chain transition matrices. Simple row and column operations allow us to create new reversible transition matrices and yield an easy method for checking a Markov chain for reversibility

    Accurate determination of tensor network state of quantum lattice models in two dimensions

    Full text link
    We have proposed a novel numerical method to calculate accurately the physical quantities of the ground state with the tensor-network wave function in two dimensions. We determine the tensor network wavefunction by a projection approach which applies iteratively the Trotter-Suzuki decomposition of the projection operator and the singular value decomposition of matrix. The norm of the wavefunction and the expectation value of a physical observable are evaluated by a coarse grain renormalization group approach. Our method allows a tensor-network wavefunction with a high bond degree of freedom (such as D=8) to be handled accurately and efficiently in the thermodynamic limit. For the Heisenberg model on a honeycomb lattice, our results for the ground state energy and the staggered magnetization agree well with those obtained by the quantum Monte Carlo and other approaches.Comment: 4 pages 5 figures 2 table

    NMR Probing Spin Excitations in the Ring-Like Structure of a Two-Subband System

    Full text link
    Resistively detected nuclear magnetic resonance (NMR) is observed inside the ring-like structure, with a quantized Hall conductance of 6e^2/h, in the phase diagram of a two subband electron system. The NMR signal persists up to 400 mK and is absent in other states with the same quantized Hall conductance. The nuclear spin-lattice relaxation time, T1, is found to decrease rapidly towards the ring center. These observations are consistent with the assertion of the ring-like region being a ferromagnetic state that is accompanied by collective spin excitations.Comment: 4 pages, 4 figure

    Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials

    Full text link
    We study the superfluid-Mott-insulator transition of ultracold bosonic atoms in a one-dimensional optical lattice with a double-well confining trap using the density-matrix renormalization group. At low density, the system behaves similarly as two separated ones inside harmonic traps. At high density, however, interesting features appear as the consequence of the quantum tunneling between the two wells and the competition between the "superfluid" and Mott regions. They are characterized by a rich step-plateau structure in the visibility and the satellite peaks in the momentum distribution function as a function of the on-site repulsion. These novel properties shed light on the understanding of the phase coherence between two coupled condensates and the off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure
    • …
    corecore