106,823 research outputs found

    Tuning electronic structure of graphene via tailoring structure: theoretical study

    Full text link
    Electronic structures of graphene sheet with different defective patterns are investigated, based on the first principles calculations. We find that defective patterns can tune the electronic structures of the graphene significantly. Triangle patterns give rise to strongly localized states near the Fermi level, and hexagonal patterns open up band gaps in the systems. In addition, rectangular patterns, which feature networks of graphene nanoribbons with either zigzag or armchair edges, exhibit semiconducting behaviors, where the band gap has an evident dependence on the width of the nanoribbons. For the networks of the graphene nanoribbons, some special channels for electronic transport are predicted.Comment: 5 figures, 6 page

    Probing Electroweak Symmetry Breaking Mechanism at the LHC: A Guideline from Power Counting Analysis

    Full text link
    We formulate the equivalence theorem as a theoretical criterion for sensitively probing the electroweak symmetry breaking mechanism, and develop a precise power counting method for the chiral Lagrangian formulated electroweak theories. Armed with these, we perform a systematic analysis on the sensitivities of the scattering processes W±W±W±W±W^\pm W^\pm \rightarrow W^\pm W^\pm and qqˉW±Zq\bar{q}'\rightarrow W^\pm Z for testing all possible effective bosonic operators in the chiral Lagrangian formulated electroweak theories at the CERN Large Hadron Collider (LHC). The analysis shows that these two kinds of processes are "complementary" in probing the electroweak symmetry breaking sector.Comment: Extended version, 11-page-Latex-file and 3 separate PS-Figs. To be Published in Mod.Phys.Lett.

    A first-principles study of the structure and lattice dielectric response of CaCu{3}Ti{4}O{12}

    Full text link
    Structural and electronic properties of CaCu{3}Ti{4}O{12} have been calculated using density-functional theory within the local spin-density approximation. After an analysis of structural stability, zone-center optical phonon frequencies are evaluated using the frozen-phonon method, and mode effective charges are determined from computed Berry-phase polarizations. Excellent agreement between calculated and measured phonon frequencies is obtained; calculated mode effective charges are in poorer agreement with experiment, although they are of the correct order of magnitude; and the lattice contribution to the static dielectric constant is calculated to be ~40. On the basis of these results, various mechanisms are considered for the enormous dielectric response reported in recent experiments. No direct evidence is found for intrinsic lattice or electronic mechanisms, suggesting that increased attention should be given to extrinsic effects.Comment: 12 pages, with 4 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/lh_cct/index.htm

    Radiance and Doppler shift distributions across the network of the quiet Sun

    Full text link
    The radiance and Doppler-shift distributions across the solar network provide observational constraints of two-dimensional modeling of transition-region emission and flows in coronal funnels. Two different methods, dispersion plots and average-profile studies, were applied to investigate these distributions. In the dispersion plots, we divided the entire scanned region into a bright and a dark part according to an image of Fe xii; we plotted intensities and Doppler shifts in each bin as determined according to a filtered intensity of Si ii. We also studied the difference in height variations of the magnetic field as extrapolated from the MDI magnetogram, in and outside network. For the average-profile study, we selected 74 individual cases and derived the average profiles of intensities and Doppler shifts across the network. The dispersion plots reveal that the intensities of Si ii and C iv increase from network boundary to network center in both parts. However, the intensity of Ne viii shows different trends, namely increasing in the bright part and decreasing in the dark part. In both parts, the Doppler shift of C iv increases steadily from internetwork to network center. The average-profile study reveals that the intensities of the three lines all decline from the network center to internetwork region. The binned intensities of Si ii and Ne viii have a good correlation. We also find that the large blue shift of Ne viii does not coincide with large red shift of C iv. Our results suggest that the network structure is still prominent at the layer where Ne viii is formed in the quiet Sun, and that the magnetic structures expand more strongly in the dark part than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure

    Giant Colloidal Diffusivity on Corrugated Optical Vortices

    Full text link
    A single colloidal sphere circulating around a periodically modulated optical vortex trap can enter a dynamical state in which it intermittently alternates between freely running around the ring-like optical vortex and becoming trapped in local potential energy minima. Velocity fluctuations in this randomly switching state still are characterized by a linear Einstein-like diffusion law, but with an effective diffusion coefficient that is enhanced by more than two orders of magnitude.Comment: 4 pages, 4 figure
    corecore