336,538 research outputs found

    Analysis of nitrogen condensation in an expanding nozzle flow

    Get PDF
    Condensation of nitrogen flow in an expanding nozzle flow is analyzed using one-dimensional gas dynamic equations and the equations for nucleation and droplet growth. Effects of variations in the Tolman constant and the mass accommodation factor are discussed as well as the effect of foreign nuclei. Comparisons are made with experimental data obtained from a small, contoured nozzle

    Parity-locking effect in a strongly-correlated ring

    Full text link
    Orbital magnetism in an integrable model of a multichannel ring with long-ranged electron-electron interactions is investigated. In a noninteracting multichannel system, the response to an external magnetic flux is the sum of many diamagnetic and paramagnetic contributions, but we find that for sufficiently strong correlations, the contributions of all channels add constructively, leading to a parity (diamagnetic or paramagnetic) which depends only on the total number of electrons. Numerical results confirm that this parity-locking effect is robust with respect to subband mixing due to disorder.Comment: part of lecture presented in the conference ``Unconventional quantum liquids", appearing in Z. Phy

    Polarized Curvature Radiation in Pulsar Magnetosphere

    Full text link
    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and co-rotating with the pulsar magnetosphere. Within the 1/{\deg} emission cone, the waves can be divided into two natural wave mode components, the ordinary (O) mode and the extraord nary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O-mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the co-rotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the co-rotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of out-coming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.Comment: 12 pages, 9 figures, Accepted for publication in MNRA

    SU(m|n) supersymmetric Calogero-Sutherland model confined in harmonic potential

    Full text link
    In this work, we study a continuous quantum system of a mixture of bosons and fermions with the supersymmetry SU(m|n). The particles are confined in a harmonic well and interact with each other through the 1/r2 interaction. The ground state wavefunction is constructed explicitly for the most general SU(m|n) case, with the ground state energy given explicitly. The full energy spectrum of excitations in the SU(m|n) model is also equal spaced. In the limiting case where there are no bosons in the system, our results reduce to those obtained previously.Comment: 9 pages, preprint of ETH-Lausanne (August 1996

    Elastic collapse in disordered isostatic networks

    Full text link
    Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power-laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order exp{-bL}. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression, or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order sqrt{p}. For directed networks, elastic moduli are of order exp{-c/p}, indicating the existence of an "isostatic length scale" of order 1/p.Comment: 6 pages, 6 figues, to appear in Europhysics Letter

    Fast mode of rotating atoms in one-dimensional lattice rings

    Full text link
    We study the rotation of atoms in one-dimensional lattice rings. In particular, the "fast mode", where the ground state atoms rotate faster than the stirring rotating the atoms, is studied both analytically and numerically. The conditions for the transition to the fast mode are found to be very different from that in continuum rings. We argue that these transition frequencies remain unchanged for bosonic condensates described in a mean field. We show that Fermionic interaction and filling factor have a significant effect on the transition to the fast mode, and Pauli principle may suppress it altogether.Comment: 4 pages, 5 figure
    corecore