48,601 research outputs found

    Mass Limits to Primordial Star Formation from Protostellar Feedback

    Get PDF
    How massive were the first stars? This question is of fundamental importance for galaxy formation and cosmic reionization. Here we consider how protostellar feedback can limit the mass of a forming star. For this we must understand the rate at which primordial protostars accrete, how they and their feedback output evolve, and how this feedback interacts with the infalling matter. We describe the accretion rate with an ``isentropic accretion'' model: the rate is initially very large (~0.03 M_sun/yr when m_* =1 M_sun) and declines as m_*^{-3/7}. Protostellar evolution is treated with a model that tracks the total energy of the star. A key difference compared to previous studies is allowance for rotation of the infalling envelope. This leads to photospheric conditions at the star and dramatic differences in the feedback. Two feedback mechanisms are considered: HII region breakout and radiation pressure from Lyman-alpha and FUV photons. Radiation pressure appears to be the dominant mechanism for suppressing infall, becoming dynamically important around 20 M_sun.Comment: 4 pages; To appear in proceedings of the 13th Annual Astrophysics Conference in Maryland: The Emergence of Cosmic Structure, eds. S. Holt and C. Reynolds, (AIP

    Star Formation at Zero and Very Low Metallicities

    Full text link
    We describe how star formation is expected to proceed in the early metal-free Universe, focusing on the very first generations of stars. We then discuss how the star formation process may change as the effects of metallicity, external radiative feedback, and magnetic and turbulent support of the gas become more important. The very first stars (Pop III.1) have relatively simple initial conditions set by cosmology and the cooling properties of primordial gas. We describe the evolution of these stars as they grow in mass by accretion from their surrounding gas cores and how the accretion process is affected and eventually terminated by radiative feedback processes, especially HII region expansion and disk photoevaporation. The ability of the protostar and its disk to generate dynamically important magnetic fields is reviewed and their effects discussed. Pop III.1 star formation is likely to produce massive (~100-200Msun) stars that then influence their surroundings via ionization, stellar winds, and supernovae. These processes heat, ionize and metal-enrich the gas, thus altering the initial conditions for the next generation of star formation. Stars formed from gas that has been altered significantly by radiative and/or mechanical feedback, but not by metal enrichment (Pop III.2) are expected to have significantly smaller masses than Pop III.1 stars because of more efficient cooling from enhanced HD production. Stars formed from gas that is metal-enriched to levels that affect the dynamics of the collapse (the first Pop II stars) are also expected to have relatively low masses. We briefly compare the above star formation scenarios to what is known about present-day star formation.Comment: 16 pages, including 11 figures, Review paper to appear in "First Stars III", eds. B. O'Shea, A. Heger and T. Abe

    The Sender-Excited Secret Key Agreement Model: Capacity, Reliability and Secrecy Exponents

    Full text link
    We consider the secret key generation problem when sources are randomly excited by the sender and there is a noiseless public discussion channel. Our setting is thus similar to recent works on channels with action-dependent states where the channel state may be influenced by some of the parties involved. We derive single-letter expressions for the secret key capacity through a type of source emulation analysis. We also derive lower bounds on the achievable reliability and secrecy exponents, i.e., the exponential rates of decay of the probability of decoding error and of the information leakage. These exponents allow us to determine a set of strongly-achievable secret key rates. For degraded eavesdroppers the maximum strongly-achievable rate equals the secret key capacity; our exponents can also be specialized to previously known results. In deriving our strong achievability results we introduce a coding scheme that combines wiretap coding (to excite the channel) and key extraction (to distill keys from residual randomness). The secret key capacity is naturally seen to be a combination of both source- and channel-type randomness. Through examples we illustrate a fundamental interplay between the portion of the secret key rate due to each type of randomness. We also illustrate inherent tradeoffs between the achievable reliability and secrecy exponents. Our new scheme also naturally accommodates rate limits on the public discussion. We show that under rate constraints we are able to achieve larger rates than those that can be attained through a pure source emulation strategy.Comment: 18 pages, 8 figures; Submitted to the IEEE Transactions on Information Theory; Revised in Oct 201

    Classification for the universal scaling of N\'eel temperature and staggered magnetization density of three-dimensional dimerized spin-1/2 antiferromagnets

    Full text link
    Inspired by the recently theoretical development relevant to the experimental data of TlCuCl3_3, particularly those associated with the universal scaling between the N\'eel temperature TNT_N and the staggered magnetization density MsM_s, we carry a detailed investigation of 3-dimensional (3D) dimerized quantum antiferromagnets using the first principles quantum Monte Carlo calculations. The motivation behind our study is to better understand the microscopic effects on these scaling relations of TNT_N and MsM_s, hence to shed some light on some of the observed inconsistency between the theoretical and the experimental results. Remarkably, for the considered 3D dimerized models, we find that the established universal scaling relations can indeed be categorized by the amount of stronger antiferromagnetic couplings connected to a lattice site. Convincing numerical evidence is provided to support this conjecture. The relevance of the outcomes presented here to the experiments of TlCuCl3_3 is briefly discussed as well.Comment: 9 pages, 27 figure

    A heterotic sigma model with novel target geometry

    Full text link
    We construct a (1,2) heterotic sigma model whose target space geometry consists of a transitive Lie algebroid with complex structure on a Kaehler manifold. We show that, under certain geometrical and topological conditions, there are two distinguished topological half--twists of the heterotic sigma model leading to A and B type half--topological models. Each of these models is characterized by the usual topological BRST operator, stemming from the heterotic (0,2) supersymmetry, and a second BRST operator anticommuting with the former, originating from the (1,0) supersymmetry. These BRST operators combined in a certain way provide each half--topological model with two inequivalent BRST structures and, correspondingly, two distinct perturbative chiral algebras and chiral rings. The latter are studied in detail and characterized geometrically in terms of Lie algebroid cohomology in the quasiclassical limit.Comment: 83 pages, no figures, 2 references adde

    Astrochemical confirmation of the rapid evolution of massive YSOs and explanation for the inferred ages of hot cores

    Get PDF
    Aims. To understand the roles of infall and protostellar evolution on the envelopes of massive young stellar objects (YSOs). Methods. The chemical evolution of gas and dust is traced, including infall and realistic source evolution. The temperatures are determined self-consistently. Both ad/desorption of ices using recent laboratory temperature-programmed-desorption measurements are included. Results. The observed water abundance jump near 100 K is reproduced by an evaporation front which moves outward as the luminosity increases. Ion-molecule reactions produce water below 100 K. The age of the source is constrained to t \~ 8 +/- 4 x 10^4 yrs since YSO formation. It is shown that the chemical age-dating of hot cores at ~ few x 10^3 - 10^4 yr and the disappearance of hot cores on a timescale of ~ 10^5 yr is a natural consequence of infall in a dynamic envelope and protostellar evolution. Dynamical structures of ~ 350AU such as disks should contain most of the complex second generation species. The assumed order of desorption kinetics does not affect these results.Comment: Accepted by A&A Letters; 4 pages, 5 figure
    corecore