28,023 research outputs found
Growth of single-crystal columns of CoSi2 embedded in epitaxial Si on Si(111) by molecular beam epitaxy
The codeposition of Si and Co on a heated Si(111) substrate is found to result in epitaxial columns of CoSi2 if the Si:Co ratio is greater than approximately 3:1. These columns are surrounded by a Si matrix which shows bulk-like crystalline quality based on transmission electron microscopy and ion channeling. This phenomenon has been studied as functions of substrate temperature and Si:Co ratio. Samples with columns ranging in average diameter from approximately 25 to 130 nm have been produced
Black hole formation in bidimensional dilaton gravity coupled to scalar matter systems
This work deals with the formation of black hole in bidimensional dilaton
gravity coupled to scalar matter fields. We investigate two scalar matter
systems, one described by a sixth power potential and the other defined with
two scalar fields containing up to the fourth power in the fields. The
topological solutions that appear in these cases allow the formation of black
holes in the corresponding dilaton gravity models.Comment: Latex, 9 pages. Published in Mod. Phys. Lett. A14 (1999) 268
On the shape of spectra for non-self-adjoint periodic Schr\"odinger operators
The spectra of the Schr\"odinger operators with periodic potentials are
studied. When the potential is real and periodic, the spectrum consists of at
most countably many line segments (energy bands) on the real line, while when
the potential is complex and periodic, the spectrum consists of at most
countably many analytic arcs in the complex plane.
In some recent papers, such operators with complex -symmetric
periodic potentials are studied. In particular, the authors argued that some
energy bands would appear and disappear under perturbations. Here, we show that
appearance and disappearance of such energy bands imply existence of nonreal
spectra. This is a consequence of a more general result, describing the local
shape of the spectrum.Comment: 5 pages, 2 figure
Spin relaxation in mesoscopic superconducting Al wires
We studied the diffusion and the relaxation of the polarized quasiparticle
spins in superconductors. To that end, quasiparticles of polarized spins were
injected through an interface of a mesoscopic superconducting Al wire in
proximity contact with an overlaid ferromagnetic Co wire in the single-domain
state. The superconductivity was observed to be suppressed near the
spin-injecting interface, as evidenced by the occurrence of a finite voltage
for a bias current below the onset of the superconducting transition. The spin
diffusion length, estimated from finite voltages over a certain length of Al
wire near the interface, was almost temperature independent in the temperature
range sufficiently below the superconducting transition but grew as the
transition temperature was approached. This temperature dependence suggests
that the relaxation of the spin polarization in the superconducting state is
governed by the condensation of quasiparticles to the paired state. The spin
relaxation in the superconducting state turned out to be more effective than in
the normal state.Comment: 9 pages, 8 figure
Ultracold Neutron Production in a Pulsed Neutron Beam Line
We present the results of an Ultracold neutron (UCN) production experiment in
a pulsed neutron beam line at the Los Alamos Neutron Scattering Center. The
experimental apparatus allows for a comprehensive set of measurements of UCN
production as a function of target temperature, incident neutron energy, target
volume, and applied magnetic field. However, the low counting statistics of the
UCN signal expected can be overwhelmed by the large background associated with
the scattering of the primary cold neutron flux that is required for UCN
production. We have developed a background subtraction technique that takes
advantage of the very different time-of-flight profiles between the UCN and the
cold neutrons, in the pulsed beam. Using the unique timing structure, we can
reliably extract the UCN signal. Solid ortho-D is used to calibrate UCN
transmission through the apparatus, which is designed primarily for studies of
UCN production in solid O. In addition to setting the overall detection
efficiency in the apparatus, UCN production data using solid D suggest that
the UCN upscattering cross-section is smaller than previous estimates,
indicating the deficiency of the incoherent approximation widely used to
estimate inelastic cross-sections in the thermal and cold regimes
Energy dissipation and violation of the fluctuation-response relation in non-equilibrium Langevin systems
The fluctuation-response relation is a fundamental relation that is
applicable to systems near equilibrium. On the other hand, when a system is
driven far from equilibrium, this relation is violated in general because the
detailed-balance condition is not satisfied in nonequilibrium systems. Even in
this case, it has been found that for a class of Langevin equations, there
exists an equality between the extent of violation of the fluctuation-response
relation in the nonequilibrium steady state and the rate of energy dissipation
from the system into the environment [T. Harada and S. -i. Sasa, Phys. Rev.
Lett. 95, 130602 (2005)]. Since this equality involves only experimentally
measurable quantities, it serves as a proposition to determine experimentally
whether the system can be described by a Langevin equation. Furthermore, the
contribution of each degree of freedom to the rate of energy dissipation can be
determined based on this equality. In this paper, we present a comprehensive
description on this equality, and provide a detailed derivation for various
types of models including many-body systems, Brownian motor models,
time-dependent systems, and systems with multiple heat reservoirs.Comment: 18 pages, submitted to Phys. Rev.
Muscleblind-like 3 deficit results in a spectrum of age-associated pathologies observed in myotonic dystrophy.
Myotonic dystrophy type I (DM1) exhibits distinctive disease specific phenotypes and the accelerated onset of a spectrum of age-associated pathologies. In DM1, dominant effects of expanded CUG repeats result in part from the inactivation of the muscleblind-like (MBNL) proteins. To test the role of MBNL3, we deleted Mbnl3 exon 2 (Mbnl3(ΔE2)) in mice and examined the onset of age-associated diseases over 4 to 13 months of age. Accelerated onset of glucose intolerance with elevated insulin levels, cardiac systole deficits, left ventricle hypertrophy, a predictor of a later onset of heart failure and the development of subcapsular and cortical cataracts is observed in Mbnl3(ΔE2) mice. Retention of embryonic splice isoforms in adult organs, a prominent defect in DM1, is not observed in multiple RNAs including the Insulin Receptor (Insr), Cardiac Troponin T (Tnnt2), Lim Domain Binding 3 (Ldb3) RNAs in Mbnl3(ΔE2) mice. Although rare DM1-like splice errors underlying the observed phenotypes cannot be excluded, our data in conjunction with the reported absence of alternative splice errors in embryonic muscles of a similar Mbnl3(ΔE2) mouse by RNA-seq studies, suggest that mechanisms distinct from the adult retention of embryonic splice patterns may make important contributions to the onset of age-associated pathologies in DM1
Exploring the Thermodynamics of a Universal Fermi Gas
From sand piles to electrons in metals, one of the greatest challenges in
modern physics is to understand the behavior of an ensemble of strongly
interacting particles. A class of quantum many-body systems such as neutron
matter and cold Fermi gases share the same universal thermodynamic properties
when interactions reach the maximum effective value allowed by quantum
mechanics, the so-called unitary limit [1,2]. It is then possible to simulate
some astrophysical phenomena inside the highly controlled environment of an
atomic physics laboratory. Previous work on the thermodynamics of a
two-component Fermi gas led to thermodynamic quantities averaged over the trap
[3-5], making it difficult to compare with many-body theories developed for
uniform gases. Here we develop a general method that provides for the first
time the equation of state of a uniform gas, as well as a detailed comparison
with existing theories [6,14]. The precision of our equation of state leads to
new physical insights on the unitary gas. For the unpolarized gas, we prove
that the low-temperature thermodynamics of the strongly interacting normal
phase is well described by Fermi liquid theory and we localize the superfluid
transition. For a spin-polarized system, our equation of state at zero
temperature has a 2% accuracy and it extends the work of [15] on the phase
diagram to a new regime of precision. We show in particular that, despite
strong correlations, the normal phase behaves as a mixture of two ideal gases:
a Fermi gas of bare majority atoms and a non-interacting gas of dressed
quasi-particles, the fermionic polarons [10,16-18].Comment: 8 pages, 5 figure
- …
