10,548 research outputs found
Herzberg Circuit and Berry's Phase in Chirality-based Coded Qubit in a Triangular Triple Quantum Dot
We present a theoretical proposal for the Herzberg circuit and controlled
accumulation of Berry's phase in a chirality-based coded qubit in a triangular
triple quantum dot molecule with one electron spin each. The qubit is encoded
in the two degenerate states of a three spin complex with total spin .
Using a Hubbard and Heisenberg model the Herzberg circuit encircling the
degeneracy point is realized by adiabatically tuning the successive on-site
energies of quantum dots and tunnel couplings across a pair of neighbouring
dots. It is explicitly shown that encircling the degeneracy point leads to the
accumulation of the geometrical Berrys phase. We show that only triangular but
not linear quantum dot molecule allows for the generation of Berry's phase and
we discuss a protocol to detect this geometrical phase
Study of HST counterparts to Chandra X-ray sources in the Globular Cluster M71
We report on archival Hubble Space Telescope (HST) observations of the
globular cluster M71 (NGC 6838). These observations, covering the core of the
globular cluster, were performed by the Advanced Camera for Surveys (ACS) and
the Wide Field Planetary Camera 2 (WFPC2). Inside the half-mass radius (r_h =
1.65') of M71, we find 33 candidate optical counterparts to 25 out of 29
Chandra X-ray sources while outside the half-mass radius, 6 possible optical
counterparts to 4 X-ray sources are found. Based on the X-ray and optical
properties of the identifications, we find 1 certain and 7 candidate
cataclysmic variables (CVs). We also classify 2 and 12 X-ray sources as certain
and potential chromospherically active binaries (ABs), respectively. The only
star in the error circle of the known millisecond pulsar (MSP) is inconsistent
with being the optical counterpart. The number of X-ray faint sources with
L_x>4x10^{30} ergs/s (0.5-6.0 keV) found in M71 is higher than extrapolations
from other clusters on the basis of either collision frequency or mass. Since
the core density of M71 is relatively low, we suggest that those CVs and ABs
are primordial in origin.Comment: 12 pages, 6 figures. Accepted for publication in Astronomy and
Astrophysic
Magnetoelastic coupling in triangular lattice antiferromagnet CuCrS2
CuCrS2 is a triangular lattice Heisenberg antiferromagnet with a rhombohedral
crystal structure. We report on neutron and synchrotron powder diffraction
results which reveal a monoclinic lattice distortion at the magnetic transition
and verify a magnetoelastic coupling. CuCrS2 is therefore an interesting
material to study the influence of magnetism on the relief of geometrical
frustration.Comment: 6 pages, 6 figures, 1 tabl
Soft x-ray magnetic circular dichroism study on Gd-doped EuO thin films
We report on the growth and characterization of ferromagnetic Gd-doped EuO
thin films. We prepared samples with Gd concentrations up to 11% by means of
molecular beam epitaxy under distillation conditions, which allows a very
precise control of the doping concentration and oxygen stoichiometry. Using
soft x-ray magnetic circular dichroism at the Eu and Gd M4,5 edges, we found
that the Curie temperature ranged from 69 K for pure stoichiometric EuO to
about 170 K for the film with the optimal Gd doping of around 4%. We also show
that the Gd magnetic moment couples ferromagnetically to that of Eu.Comment: 4 pages, 4 figure
Determining the crystal-field ground state in rare earth Heavy Fermion materials using soft-x-ray absorption spectroscopy
We infer that soft-x-ray absorption spectroscopy is a versatile method for
the determination of the crystal-field ground state symmetry of rare earth
Heavy Fermion systems, complementing neutron scattering. Using realistic and
universal parameters, we provide a theoretical mapping between the polarization
dependence of Ce spectra and the charge distribution of the Ce
states. The experimental resolution can be orders of magnitude larger than the
crystal field splitting itself. To demonstrate the experimental
feasibility of the method, we investigated CePdSi, thereby settling an
existing disagreement about its crystal-field ground state
Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators
Three-dimensional (3D) topological insulators (TI) are novel quantum
materials with insulating bulk and topologically protected metallic surfaces
with Dirac-like band structure. The spin-helical Dirac surface states are
expected to host exotic topological quantum effects and find applications in
spintronics and quantum computation. The experimental realization of these
ideas requires fabrication of versatile devices based on bulk-insulating TIs
with tunable surface states. The main challenge facing the current TI materials
exemplified by Bi2Se3 and Bi2Te3 is the significant bulk conduction, which
remains unsolved despite extensive efforts involving nanostructuring, chemical
doping and electrical gating. Here we report a novel approach for engineering
the band structure of TIs by molecular beam epitaxy (MBE) growth of
(Bi1-xSbx)2Te3 ternary compounds. Angle-resolved photoemission spectroscopy
(ARPES) and transport measurements show that the topological surface states
exist over the entire composition range of (Bi1-xSbx)2Te3 (x = 0 to 1),
indicating the robustness of bulk Z2 topology. Most remarkably, the systematic
band engineering leads to ideal TIs with truly insulating bulk and tunable
surface state across the Dirac point that behave like one quarter of graphene.
This work demonstrates a new route to achieving intrinsic quantum transport of
the topological surface states and designing conceptually new TI devices with
well-established semiconductor technology.Comment: Minor changes in title, text and figures. Supplementary information
adde
Volume Fractions of the Kinematic "Near-Critical" Sets of the Quantum Ensemble Control Landscape
An estimate is derived for the volume fraction of a subset in the neighborhood
of the critical set
of the kinematic quantum ensemble control landscape J(U) = Tr(U\rho U' O),
where represents the unitary time evolution operator, {\rho} is the initial
density matrix of the ensemble, and O is an observable operator. This estimate
is based on the Hilbert-Schmidt geometry for the unitary group and a
first-order approximation of . An upper bound on these
near-critical volumes is conjectured and supported by numerical simulation,
leading to an asymptotic analysis as the dimension of the quantum system
rises in which the volume fractions of these "near-critical" sets decrease to
zero as increases. This result helps explain the apparent lack of influence
exerted by the many saddles of over the gradient flow.Comment: 27 pages, 1 figur
- …