284,453 research outputs found
An analysis of performance estimation methods for aircraft
Measurements and analytical extrapolation validity in predicting full scale flight performance from model wind tunnel test
Maximizing Hadron Collider Sensitivity to Gauge-Mediated Supersymmetry Breaking Models
We consider typical hadron collider detector signals sensitive to delayed
decays of the lightest neutralino to photon plus goldstino and demonstrate the
potential for substantially increasing the portion of the general parameter
space of a gauge-mediated supersymmetry breaking model that can be probed at
the Tevatron.Comment: 11 pages, full postscript file is available via anonymous ftp at
ftp://ucdhep.ucdavis.edu/gunion/gmsb.ps; incorrect labels on figures
correcte
Exploring Quantum Phase Transitions with a Novel Sublattice Entanglement Scenario
We introduce a new measure called reduced entropy of sublattice to quantify
entanglement in spin, electron and boson systems. By analyzing this quantity,
we reveal an intriguing connection between quantum entanglement and quantum
phase transitions in various strongly correlated systems: the local extremes of
reduced entropy and its first derivative as functions of the coupling constant
coincide respectively with the first and second order transition points. Exact
numerical studies merely for small lattices reproduce several well-known
results, demonstrating that our scenario is quite promising for exploring
quantum phase transitions.Comment: 4 pages, 4 figure
The role of gravity on macrosegregation in alloys
During dendritic solidification liquid flow is induced both by buoyancy forces and solidification shrinkage. There is strong evidence that the major reason for the liquid flow is the former, i.e., thermosolutal convection. In the microgravity environment, it is thought that the thermosolutal convection will be greatly diminished so that convection will be confined mainly to the flow of interdendritic liquid required to satisfy the solidification shrinkage. An attempt is made to provide improved models of dendritic solidification with emphasis on convection and macrosegregation. Macrosegregation is an extremely important subject to the commercial casting community. The simulation of thermosolutal convection in directionally solidified (DS) alloys is described. A linear stability analysis was used to predict marginal stability curves for a system that comprises a mushy zone underlying an all-liquid zone. The supercritical thermosolutal convection in directionally solidified dendritic alloys was also modeled. The model assumes a nonconvective initial state with planar and horizontal isotherms and isoconcentration that move upward at a constant solidification velocity. Results are presented for systems involving lead-tin alloys and show significant differences with results of plane-front solidification
Fluid mechanics of directional solidification at reduced gravity
The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena
- …
