31,851 research outputs found

    Cyclic cosmology from Lagrange-multiplier modified gravity

    Full text link
    We investigate cyclic and singularity-free evolutions in a universe governed by Lagrange-multiplier modified gravity, either in scalar-field cosmology, as well as in f(R)f(R) one. In the scalar case, cyclicity can be induced by a suitably reconstructed simple potential, and the matter content of the universe can be successfully incorporated. In the case of f(R)f(R)-gravity, cyclicity can be induced by a suitable reconstructed second function f2(R)f_2(R) of a very simple form, however the matter evolution cannot be analytically handled. Furthermore, we study the evolution of cosmological perturbations for the two scenarios. For the scalar case the system possesses no wavelike modes due to a dust-like sound speed, while for the f(R)f(R) case there exist an oscillation mode of perturbations which indicates a dynamical degree of freedom. Both scenarios allow for stable parameter spaces of cosmological perturbations through the bouncing point.Comment: 8 pages, 3 figures, references added, accepted for publicatio

    Bounce and cyclic cosmology in extended nonlinear massive gravity

    Full text link
    We investigate non-singular bounce and cyclic cosmological evolutions in a universe governed by the extended nonlinear massive gravity, in which the graviton mass is promoted to a scalar-field potential. The extra freedom of the theory can lead to certain energy conditions violations and drive cyclicity with two different mechanisms: either with a suitably chosen scalar-field potential under a given Stuckelberg-scalar function, or with a suitably chosen Stuckelberg-scalar function under a given scalar-field potential. Our analysis shows that extended nonlinear massive gravity can alter significantly the evolution of the universe at both early and late times.Comment: 20 pages, 5 figures, version published at JCA

    Testing the Lorentz and CPT Symmetry with CMB polarizations and a non-relativistic Maxwell Theory

    Full text link
    We present a model for a system involving a photon gauge field and a scalar field at quantum criticality in the frame of a Lifthitz-type non-relativistic Maxwell theory. We will show this model gives rise to Lorentz and CPT violation which leads to a frequency-dependent rotation of polarization plane of radiations, and so leaves potential signals on the cosmic microwave background temperature and polarization anisotropies.Comment: 7 pages, 2 figures, accepted on JCAP, a few references adde

    Generalized seniority for the shell model with realistic interactions

    Full text link
    The generalized seniority scheme has long been proposed as a means of dramatically reducing the dimensionality of nuclear shell model calculations, when strong pairing correlations are present. However, systematic benchmark calculations, comparing results obtained in a model space truncated according to generalized seniority with those obtained in the full shell model space, are required to assess the viability of this scheme. Here, a detailed comparison is carried out, for semimagic nuclei taken in a full major shell and with realistic interactions. The even-mass and odd-mass Ca isotopes are treated in the generalized seniority scheme, for generalized seniority v<=3. Results for level energies, orbital occupations, and electromagnetic observables are compared with those obtained in the full shell model space.Comment: 13 pages, 8 figures; published in Phys. Rev.

    Sensitive Chemical Compass Assisted by Quantum Criticality

    Full text link
    The radical-pair-based chemical reaction could be used by birds for the navigation via the geomagnetic direction. An inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could response to the weak magnetic field and be sensitive to the direction of such a field and then results in different photopigments in the avian eyes to be sensed. Here, we propose a quantum bionic setup for the ultra-sensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via the recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of the detection of the weak magnetic field.Comment: 4 pages, 3 figure

    Novel Scaling Behavior for the Multiplicity Distribution under Second-Order Quark-Hadron Phase Transition

    Full text link
    Deviation of the multiplicity distribution PqP_q in small bin from its Poisson counterpart pqp_q is studied within the Ginzburg-Landau description for second-order quark-hadron phase transition. Dynamical factor dqPq/pqd_q\equiv P_q/p_q for the distribution and ratio Dqdq/d1D_q\equiv d_q/d_1 are defined, and novel scaling behaviors between DqD_q are found which can be used to detect the formation of quark-gluon plasma. The study of dqd_q and DqD_q is also very interesting for other multiparticle production processes without phase transition.Comment: 4 pages in revtex, 5 figures in eps format, will be appeared in Phys. Rev.
    corecore