35,674 research outputs found

    Quantum criticality in Kondo quantum dot coupled to helical edge states of interacting 2D topological insulators

    Full text link
    We investigate theoretically the quantum phase transition (QPT) between the one-channel Kondo (1CK) and two-channel Kondo (2CK) fixed points in a quantum dot coupled to helical edge states of interacting 2D topological insulators (2DTI) with Luttinger parameter 0<K<10<K<1. The model has been studied in Ref. 21, and was mapped onto an anisotropic two-channel Kondo model via bosonization. For K<1, the strong coupling 2CK fixed point was argued to be stable for infinitesimally weak tunnelings between dot and the 2DTI based on a simple scaling dimensional analysis[21]. We re-examine this model beyond the bare scaling dimension analysis via a 1-loop renormalization group (RG) approach combined with bosonization and re-fermionization techniques near weak-coupling and strong-coupling (2CK) fixed points. We find for K -->1 that the 2CK fixed point can be unstable towards the 1CK fixed point and the system may undergo a quantum phase transition between 1CK and 2CK fixed points. The QPT in our model comes as a result of the combined Kondo and the helical Luttinger physics in 2DTI, and it serves as the first example of the 1CK-2CK QPT that is accessible by the controlled RG approach. We extract quantum critical and crossover behaviors from various thermodynamical quantities near the transition. Our results are robust against particle-hole asymmetry for 1/2<K<1.Comment: 17 pages, 9 figures, more details added, typos corrected, revised Sec. IV, V, Appendix A and

    Time evolution towards q-Gaussian stationary states through unified Ito-Stratonovich stochastic equation

    Full text link
    We consider a class of single-particle one-dimensional stochastic equations which include external field, additive and multiplicative noises. We use a parameter θ∈[0,1]\theta \in [0,1] which enables the unification of the traditional It\^o and Stratonovich approaches, now recovered respectively as the θ=0\theta=0 and θ=1/2\theta=1/2 particular cases to derive the associated Fokker-Planck equation (FPE). These FPE is a {\it linear} one, and its stationary state is given by a qq-Gaussian distribution with q=τ+2M(2−θ)τ+2M(1−θ)<3q = \frac{\tau + 2M (2 - \theta)}{\tau + 2M (1 - \theta)}<3, where τ≥0\tau \ge 0 characterizes the strength of the confining external field, and M≥0M \ge 0 is the (normalized) amplitude of the multiplicative noise. We also calculate the standard kurtosis κ1\kappa_1 and the qq-generalized kurtosis κq\kappa_q (i.e., the standard kurtosis but using the escort distribution instead of the direct one). Through these two quantities we numerically follow the time evolution of the distributions. Finally, we exhibit how these quantities can be used as convenient calibrations for determining the index qq from numerical data obtained through experiments, observations or numerical computations.Comment: 9 pages, 2 figure

    Strong Collapse Turbulence in Quintic Nonlinear Schr\"odinger Equation

    Full text link
    We consider the quintic one dimensional nonlinear Schr\"odinger equation with forcing and both linear and nonlinear dissipation. Quintic nonlinearity results in multiple collapse events randomly distributed in space and time forming forced turbulence. Without dissipation each of these collapses produces finite time singularity but dissipative terms prevents actual formation of singularity. In statistical steady state of the developed turbulence the spatial correlation function has a universal form with the correlation length determined by the modulational instability scale. The amplitude fluctuations at that scale are nearly-Gaussian while the large amplitude tail of probability density function (PDF) is strongly non-Gaussian with power-like behavior. The small amplitude nearly-Gaussian fluctuations seed formation of large collapse events. The universal spatio-temporal form of these events together with the PDF for their maximum amplitudes define the power-like tail of PDF for large amplitude fluctuations, i.e., the intermittency of strong turbulence.Comment: 14 pages, 17 figure

    Radion Potential and Brane Dynamics

    Get PDF
    We examine the cosmology of the Randall-Sundrum model in a dynamic setting where scalar fields are present in the bulk as well as the branes. This generates a mechanism similar to that of Goldberger-Wise for radion stabilization and the recovery of late-cosmology features in the branes. Due to the induced radion dynamics, the inflating branes roll towards the minimum of the radion potential, thereby exiting inflation and reheating the Universe. In the slow roll part of the potential, the 'TeV' branes have maximum inflation rate and energy as their coupling to the radion and bulk modes have minimum suppresion. Hence, when rolling down the steep end of the potential towards the stable point, the radion field (which appears as the inflaton of the effective 4D theory in the branes) decays very fast, reheats the Universe .This process results decayin a decrease of brane's canonical vacuum energy Λ4\Lambda_4. However, at the minimum of the potential Λ4\Lambda_4 is small but not neccessarily zero and the fine-tuning issue remains .Density perturbation constraints introduce an upper bound when the radion stabilizies. Due to the large radion mass and strong suppression to the bulk modes, moduli problems and bulk reheating do not occur. The reheat temperature and a sufficient number of e-folding constraints for the brane-universe are also satisfied. The model therefore recovers the radiation dominated FRW universe.Comment: 16 pages, 3 figures,extraneous sentences removed, 2 footnotes added, some typos correcte

    Thermomechanical behavior of plasma-sprayed ZrO2-Y2O3 coatings influenced by plasticity, creep and oxidation

    Get PDF
    Thermocycling of ceramic-coated turbomachine components produces high thermomechanical stresses that are mitigated by plasticity and creep but aggravated by oxidation, with residual stresses exacerbated by all three. These residual stresses, coupled with the thermocyclic loading, lead to high compressive stresses that cause the coating to spall. A ceramic-coated gas path seal is modeled with consideration given to creep, plasticity, and oxidation. The resulting stresses and possible failure modes are discussed
    • …
    corecore