74,827 research outputs found
Solidification/stabilisation of soil contaminated with metal: a review
Solidification/stabilisation (S/S) is generically defined as a chemical and physical alteration technique of reducing the mobility as well as solubility of contaminants in wastes in order to convert them into chemically inert form. The technique is specifically developed to confine the movement of contaminants in wastes so that their concentrations in the surrounding environment (e.g. subsurface soil matrices and groundwater) will not exceed stipulated environmental regulatory levels. This technique necessitates application of cementitious materials such as cement which also provides a favorable solidification effect on the stabilised wastes so that the end product can be easily transported to disposal sites or reused as construction materials. This paper reviews the S/S technology as applied to contaminated soil treatment with emphasis on its chemical binder systems, mechanisms, interferences and post-treatment leaching tests. S/S is an important soil contamination remediation technology as evident by its simplicity, technical and cost-effectiveness
An investigation of the corporate responsibility report assurance statements of the Big Four banks in Australia
The corporate responsibility report demonstrates an organisation’s commitment to sustainability. Currently, not much is known about the quality of the assurance statements of the corporate responsibility reports of banks in Australia. This research study fills the gap in the literature by investigating the corporate responsibility report assurance statements of the Big Four banks in Australia. The assurance statements are evaluated against the criteria provided by O’Dwyer and Owen (2005) and Perego and Kolk (2012). The results reveal that although the assurance statements, on average, meet the criteria highly, there are areas that need improvement. Keywords: assurance, bank, AA1000AS, ASAE 3000, ISAE 3000 JEL Codes:G21, M14, M4
Effective video multicast over wireless internet
With the rapid growth of wireless networks and great success of Internet video, wireless video services are expected to be widely deployed in the near future. As different types of wireless networks are converging into all IP networks, i.e., the Internet, it is important to study video delivery over the wireless Internet. This paper proposes a novel end-system based adaptation protocol calledWireless Hybrid Adaptation Layered Multicast (WHALM) protocol for layered video multicast over wireless Internet. In WHALM the sender dynamically collects bandwidth distribution from the receivers and uses an optimal layer rate allocation mechanism to reduce the mismatches between the coarse-grained layer subscription levels and the heterogeneous and dynamic rate requirements from the receivers, thus maximizing the degree of satisfaction of all the receivers in a multicast session. Based on sampling theory and theory of probability, we reduce the required number of bandwidth feedbacks to a reasonable degree and use a scalable feedback mechanism to control the feedback process practically. WHALM is also tuned to perform well in wireless networks by integrating an end-to-end loss differentiation algorithm (LDA) to differentiate error losses from congestion losses at the receiver side. With a series of simulation experiments over NS platform, WHALM has been proved to be able to greatly improve the degree of satisfaction of all the receivers while avoiding congestion collapse on the wireless Internet
Large bipartite Bell violations with dichotomic measurements
In this paper we introduce a simple and natural bipartite Bell scenario, by
considering the correlations between two parties defined by general
measurements in one party and dichotomic ones in the other. We show that
unbounded Bell violations can be obtained in this context. Since such
violations cannot occur when both parties use dichotomic measurements, our
setting can be considered as the simplest one where this phenomenon can be
observed. Our example is essentially optimal in terms of the outputs and the
Hilbert space dimension
Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of "patches" and "points"
Numerical and analytical studies of decaying, two-dimensional (2D)
Navier-Stokes (NS) turbulence at high Reynolds numbers are reported. The effort
is to determine computable distinctions between two different formulations of
maximum entropy predictions for the decayed, late-time state. Both formulations
define an entropy through a somewhat ad hoc discretization of vorticity to the
"particles" of which statistical mechanical methods are employed to define an
entropy, before passing to a mean-field limit. In one case, the particles are
delta-function parallel "line" vortices ("points" in two dimensions), and in
the other, they are finite-area, mutually-exclusive convected "patches" of
vorticity which in the limit of zero area become "points." We use
time-dependent, spectral-method direct numerical simulation of the
Navier-Stokes equations to see if initial conditions which should relax to
different late-time states under the two formulations actually do so.Comment: 21 pages, 24 figures: submitted to "Physics of Fluids
- …
