12,817 research outputs found

    Germplasm-regression-combined marker-trait association identification in plants

    Get PDF
    In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). However, results have been modest. This has been due to several factors including absence of tight linkage QTL, non-availability of mapping populations and lack of substantial time needed to develop such populations. To overcome these limitations and as an alternative to planned populations, molecular marker- trait associations have been identified by the combination between germplasm and the regression technique. In the present preview, we first surveyed the successful applications of germplasm-regression-combined (GRC) molecular marker-trait association identification in plants;secondly, we described how to do the GRC analysis and its differences from mapping QTL based on a linkage map reconstructed from the planned populations; thirdly, we considered the factors that affect the GRC association identification, including selections of optimal germplasm and molecular markers and testing of identification efficiency of markers associated with traits; and finally we discussed the future prospects of GRC marker-trait association analysis used in plant MAS/QTL breeding programs, especially in long-juvenile woody plants when no other genetic information such as linkage maps and Quantitative Trait Loci are available

    Anisotropic superconducting properties of aligned Sm0.95_{0.95}La0.05_{0.05}FeAsO0.85_{0.85}F0.15_{0.15} microcrystalline powder

    Full text link
    The Sm0.95_{0.95}La0.05_{0.05}FeAsO0.85_{0.85}F0.15_{0.15} compound is a quasi-2D layered superconductor with a superconducting transition temperature Tc_c = 52 K. Due to the Fe spin-orbital related anisotropic exchange coupling (antiferromagnetic or ferromagnetic fluctuation), the tetragonal microcrystalline powder can be aligned at room temperature using the field-rotation method where the tetragonal ab\it{ab}-plane is parallel to the aligned magnetic field Ba_{a} and c\it{c}-axis along the rotation axis. Anisotropic superconducting properties with anisotropic diamagnetic ratio χc/χab∼\chi_{c}/\chi_{ab}\sim 2.4 + 0.6 was observed from low field susceptibility χ\chi(T) and magnetization M(Ba_{a}). The anisotropic low-field phase diagram with the variation of lower critical field gives a zero-temperature penetration depth λc\lambda_{c}(0) = 280 nm and λab\lambda_{ab}(0) = 120 nm. The magnetic fluctuation used for powder alignment at 300 K may be related with the pairing mechanism of superconductivity at lower temperature.Comment: 4 pages, 6 figure
    • …
    corecore