19,013 research outputs found
Dirichlet-Neumann and Neumann-Neumann Waveform Relaxation for the Wave Equation
We present a Waveform Relaxation (WR) version of the Dirichlet-Neumann and
Neumann-Neumann algorithms for the wave equation in space time. Each method is
based on a non-overlapping spatial domain decomposition, and the iteration
involves subdomain solves in space time with corresponding interface condition,
followed by a correction step. Using a Laplace transform argument, for a
particular relaxation parameter, we prove convergence of both algorithms in a
finite number of steps for finite time intervals. The number of steps depends
on the size of the subdomains and the time window length on which the
algorithms are employed. We illustrate the performance of the algorithms with
numerical results, and also show a comparison with classical and optimized
Schwarz WR methods.Comment: 8 pages, 6 figures, presented in 22nd International conference on
Domain Decomposition Methods, to appear in Domain Decomposition in Science
and Engineering XXII, LNCSE, Springer-Verlag 201
Understanding the role of chromatin remodeling in the regulation of circadian transcription in Drosophila.
Circadian clocks enable organisms to anticipate daily changes in the environment and coordinate temporal rhythms in physiology and behavior with the 24-h day-night cycle. The robust cycling of circadian gene expression is critical for proper timekeeping, and is regulated by transcription factor binding, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Recently, it has become clear that dynamic alterations in chromatin landscape at the level of histone posttranslational modification and nucleosome density facilitate rhythms in transcription factor recruitment and RNAPII activity, and are essential for progression through activating and repressive phases of circadian transcription. Here, we discuss the characterization of the BRAHMA (BRM) chromatin-remodeling protein in Drosophila in the context of circadian clock regulation. By dissecting its catalytic vs. non-catalytic activities, we propose a model in which the non-catalytic activity of BRM functions to recruit repressive factors to limit the transcriptional output of CLOCK (CLK) during the active phase of circadian transcription, while the primary function of the ATP-dependent catalytic activity is to tune and prevent over-recruitment of negative regulators by increasing nucleosome density. Finally, we divulge ongoing efforts and investigative directions toward a deeper mechanistic understanding of transcriptional regulation of circadian gene expression at the chromatin level
The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment
We developed a highly sensitive, reliable and portable automatic system
(H) to monitor the radon concentration of the underground experimental
halls of the Daya Bay Reactor Neutrino Experiment. H is able to measure
radon concentration with a statistical error less than 10\% in a 1-hour
measurement of dehumidified air (R.H. 5\% at 25C) with radon
concentration as low as 50 Bq/m. This is achieved by using a large radon
progeny collection chamber, semiconductor -particle detector with high
energy resolution, improved electronics and software. The integrated radon
monitoring system is highly customizable to operate in different run modes at
scheduled times and can be controlled remotely to sample radon in ambient air
or in water from the water pools where the antineutrino detectors are being
housed. The radon monitoring system has been running in the three experimental
halls of the Daya Bay Reactor Neutrino Experiment since November 2013
Pluri-Canonical Models of Supersymmetric Curves
This paper is about pluri-canonical models of supersymmetric (susy) curves.
Susy curves are generalisations of Riemann surfaces in the realm of super
geometry. Their moduli space is a key object in supersymmetric string theory.
We study the pluri-canonical models of a susy curve, and we make some
considerations about Hilbert schemes and moduli spaces of susy curves.Comment: To appear in the proceedings of the intensive period "Perspectives in
Lie Algebras", held at the CRM Ennio De Giorgi, Pisa, Italy, 201
Postnatal maturation of the spinal-bulbo-spinal loop: brainstem control of spinal nociception is independent of sensory input in neonatal rats
The rostroventral medial medulla (RVM) is part of a rapidly acting spino-bulbo-spinal loop that is activated by ascending nociceptive inputs and drives descending feedback modulation of spinal nociception. In the adult rat, the RVM can facilitate or inhibit dorsal horn neuron inputs but in young animals descending facilitation dominates. It is not known whether this early life facilitation is part of a feedback loop. We hypothesized that the newborn RVM functions independently of sensory input, before the maturation of feedback control. We show here that noxious hind paw pinch evokes no fos activation in the RVM or the periaqueductal gray at postnatal day (P) 4 or P8, indicating a lack of nociceptive input at these ages. Significant fos activation was evident at P12, P21, and in adults. Furthermore, direct excitation of RVM neurons with microinjection of DL-homocysteic acid did not alter the net activity of dorsal horn neurons at P10, suggesting an absence of glutamatergic drive, whereas the same injections caused significant facilitation at P21. In contrast, silencing RVM neurons at P8 with microinjection of lidocaine inhibited dorsal horn neuron activity, indicating a tonic descending spinal facilitation from the RVM at this age. The results support the hypothesis that early life descending facilitation of spinal nociception is independent of sensory input. Since it is not altered by RVM glutamatergic receptor activation, it is likely generated by spontaneous brainstem activity. Only later in postnatal life can this descending activity be modulated by ascending nociceptive inputs in a functional spinal-bulbo-spinal loop
- …
