41 research outputs found

    Long-term in vitro maintenance of clonal abundance and leukaemia-initiating potential in acute lymphoblastic leukaemia

    Get PDF
    Lack of suitable in vitro culture conditions for primary acute lymphoblastic leukaemia (ALL) cells severely impairs their experimental accessibility and the testing of new drugs on cell material reflecting clonal heterogeneity in patients. We show that Nestin-positive human mesenchymal stem cells (MSCs) support expansion of a range of biologically and clinically distinct patient-derived ALL samples. Adherent ALL cells showed an increased accumulation in the S phase of the cell cycle and diminished apoptosis when compared with cells in the suspension fraction. Moreover, surface expression of adhesion molecules CD34, CDH2 and CD10 increased several fold. Approximately 20% of the ALL cells were in G0 phase of the cell cycle, suggesting that MSCs may support quiescent ALL cells. Cellular barcoding demonstrated long-term preservation of clonal abundance. Expansion of ALL cells for >3 months compromised neither feeder dependence nor cancer initiating ability as judged by their engraftment potential in immunocompromised mice. Finally, we demonstrate the suitability of this co-culture approach for the investigation of drug combinations with luciferase-expressing primograft ALL cells. Taken together, we have developed a preclinical platform with patient-derived material that will facilitate the development of clinically effective combination therapies for ALL

    The Leukemia-Specific Fusion Gene ETV6/RUNX1 Perturbs Distinct Key Biological Functions Primarily by Gene Repression

    Get PDF
    -positive leukemic cell lines.-positive ALL samples underline the relevance of these pathways and molecular functions. We also validated six differentially expressed genes representing the categories “stem cell properties”, “B-cell differentiation”, “immune response”, “cell adhesion” and “DNA damage” with RT-qPCR. fusion gene interferes with key regulatory functions that shape the biology of this leukemia subtype. E/R may thus indeed constitute the essential driving force for the propagation and maintenance of the leukemic process irrespective of potential consequences of associated secondary changes. Finally, these findings may also provide a valuable source of potentially attractive therapeutic targets

    Understanding the cancer stem cell

    Get PDF
    The last 15 years has seen an explosion of interest in the cancer stem cell (CSC). Although it was initially believed that only a rare population of stem cells are able to undergo self-renewing divisions and differentiate to form all populations within a malignancy, a recent work has shown that these cells may not be as rare as thought first, at least in some malignancies. Improved experimental models are beginning to uncover a less rigid structure to CSC biology, in which the concepts of functional plasticity and clonal evolution must be incorporated into the traditional models. Slowly the genetic programmes and biological processes underlying stem cell biology are being elucidated, opening the door to the development of drugs targeting the CSC. The aim of ongoing research to understand CSCs is to develop novel stem cell-directed treatments, which will reduce therapy resistance, relapse and the toxicity associated with current, non-selective agents
    corecore