343 research outputs found

    SAS-B digitized spark chamber gamma ray telescope

    Get PDF
    Systems description of SAS-B gamma ray telescope with multilayer digitized spark chamber for gamma rays with energy exceeding 20 Me

    High energy gamma ray balloon instrument

    Get PDF
    The High Energy Gamma Ray Balloon Instrument was built in part to verify certain subsystems' performance for the Energetic Gamma Ray Experiment Telescope (EGRET) instrument, the high energy telescope to be carried on the Gamma Ray Observatory. This paper describes the instrument, the performance of some subsystems, and some relevant results

    Expanding the toolbox of metabolically stable lipid prodrug strategies

    Get PDF
    Nucleoside- and nucleotide-based therapeutics are indispensable treatment options for patients suffering from malignant and viral diseases. These agents are most commonly administered to patients as prodrugs to maximize bioavailability and efficacy. While the literature provides a practical prodrug playbook to facilitate the delivery of nucleoside and nucleotide therapeutics, small context-dependent amendments to these popular prodrug strategies can drive dramatic improvements in pharmacokinetic (PK) profiles. Herein we offer a brief overview of current prodrug strategies, as well as a case study involving the fine-tuning of lipid prodrugs of acyclic nucleoside phosphonate tenofovir (TFV), an approved nucleotide HIV reverse transcriptase inhibitor (NtRTI) and the cornerstone of combination antiretroviral therapy (cART). Installation of novel lipid terminal motifs significantly reduced fatty acid hepatic Ο‰-oxidation while maintaining potent antiviral activity. This work contributes important insights to the expanding repertoire of lipid prodrug strategies in general, but particularly for the delivery and distribution of acyclic nucleoside phosphonates

    Submaximal Angioplasty for Symptomatic Intracranial Atherosclerotic Disease: A Meta-Analysis of Peri-Procedural and Long-Term Risk

    Get PDF
    Β© 2019 by the Congress of Neurological Surgeons. BACKGROUND: Symptomatic intracranial atherosclerotic disease (ICAD) is an important cause of stroke. Although the high periprocedural risk of intracranial stenting from recent randomized studies has dampened enthusiasm for such interventions, submaximal angioplasty without stenting may represent a safer endovascular treatment option. OBJECTIVE: To examine the periprocedural and long-term risks associated with submaximal angioplasty for ICAD based on the available literature. METHODS: All English language studies of intracranial angioplasty for ICAD were screened. Inclusion criteria were as follows: β‰₯ 5 patients, intervention with submaximal angioplasty alone, and identifiable periprocedural (30-d) outcomes. Analysis was co-nducted to identify the following: 1) periprocedural risk of any stroke (ischemic or hemorrh-agic) or death, and 2) stroke in the territory of the target vessel and fatal stroke beyond 30 d. Mixed effects logistic regression was used to summarize event rates. Funnel plot and rank correlation tests were employed to detect publication bias. The relative risk of periprocedural events from anterior vs posterior circulation disease intervention was also examined. RESULTS: A total of 9 studies with 408 interventions in 395 patients met inclusion criteria. Six of these studies included 113 posterior circulation interventions. The estimated pooled rate for 30-d stroke or death following submaximal angioplasty was 4.9% (95% CI: 3.2%-7.5%), whereas the estimated pooled rate beyond 30 d was 3.7% (95% CI: 2.2%-6.0%). There was no statistical difference in estimated pooled rate for 30-d stroke or death between patients with anterior (4.8%, 95% CI: 2.8%-7.9%) vs posterior (5.3%, 95% CI: 2.4%-11.3%) circulation disease (P \u3e. 99). CONCLUSION: Submaximal angioplasty represents a potentially promising intervention for symptomatic ICAD

    Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin

    Get PDF
    Background: Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties. Methodology/Results: The new peptides derived from a trio of homologous Ξ²-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8Β±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6Β±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular Ξ²-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface. Conclusion: Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1

    Inflammatory Genital Infections Mitigate a Severe Genetic Bottleneck in Heterosexual Transmission of Subtype A and C HIV-1

    Get PDF
    The HIV-1 epidemic in sub-Saharan Africa is driven largely by heterosexual transmission of non-subtype B viruses, of which subtypes C and A are predominant. Previous studies of subtype B and subtype C transmission pairs have suggested that a single variant from the chronically infected partner can establish infection in their newly infected partner. However, in subtype A infected individuals from a sex worker cohort and subtype B individuals from STD clinics, infection was frequently established by multiple variants. This study examined over 1750 single-genome amplified viral sequences derived from epidemiologically linked subtype C and subtype A transmission pairs very early after infection. In 90% (18/20) of the pairs, HIV-1 infection is initiated by a single viral variant that is derived from the quasispecies of the transmitting partner. In addition, the virus initiating infection in individuals who were infected by someone other than their spouse was characterized to determine if genital infections mitigated the severe genetic bottleneck observed in a majority of epidemiologically linked heterosexual HIV-1 transmission events. In nearly 50% (3/7) of individuals infected by someone other than their spouse, multiple genetic variants from a single individual established infection. A statistically significant association was observed between infection by multiple genetic variants and an inflammatory genital infection in the newly infected individual. Thus, in the vast majority of HIV-1 transmission events in cohabiting heterosexual couples, a single genetic variant establishes infection. Nevertheless, this severe genetic bottleneck can be mitigated by the presence of inflammatory genital infections in the at risk partner, suggesting that this restriction on genetic diversity is imposed in large part by the mucosal barrier

    Escape from Autologous Neutralizing Antibodies in Acute/Early Subtype C HIV-1 Infection Requires Multiple Pathways

    Get PDF
    One aim for an HIV vaccine is to elicit neutralizing antibodies (Nab) that can limit replication of genetically diverse viruses and prevent establishment of a new infection. Thus, identifying the strengths and weaknesses of Nab during the early stages of natural infection could prove useful in achieving this goal. Here we demonstrate that viral escape readily occurred despite the development of high titer autologous Nab in two subjects with acute/early subtype C infection. To provide a detailed portrayal of the escape pathways, Nab resistant variants identified at multiple time points were used to create a series of envelope (Env) glycoprotein chimeras and mutants within the background of a corresponding newly transmitted Env. In one subject, Nab escape was driven predominantly by changes in the region of gp120 that extends from the beginning of the V3 domain to the end of the V5 domain (V3V5). However, Nab escape pathways in this subject oscillated and at times required cooperation between V1V2 and the gp41 ectodomain. In the second subject, escape was driven by changes in V1V2. This V1V2-dependent escape pathway was retained over time, and its utility was reflected in the virus's ability to escape from two distinct monoclonal antibodies (Mabs) derived from this same patient via introduction of a single potential N-linked glycosylation site in V2. Spatial representation of the sequence changes in gp120 suggested that selective pressure acted upon the same regions of Env in these two subjects, even though the Env domains that drove escape were different. Together the findings argue that a single mutational pathway is not sufficient to confer escape in early subtype C HIV-1 infection, and support a model in which multiple strategies, including potential glycan shifts, direct alteration of an epitope sequence, and cooperative Env domain conformational masking, are used to evade neutralization
    • …
    corecore