17,720 research outputs found
Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-sequence Cardiac MR Images Segmentation
Analysis and modeling of the ventricles and myocardium are important in the
diagnostic and treatment of heart diseases. Manual delineation of those tissues
in cardiac MR (CMR) scans is laborious and time-consuming. The ambiguity of the
boundaries makes the segmentation task rather challenging. Furthermore, the
annotations on some modalities such as Late Gadolinium Enhancement (LGE) MRI,
are often not available. We propose an end-to-end segmentation framework based
on convolutional neural network (CNN) and adversarial learning. A dilated
residual U-shape network is used as a segmentor to generate the prediction
mask; meanwhile, a CNN is utilized as a discriminator model to judge the
segmentation quality. To leverage the available annotations across modalities
per patient, a new loss function named weak domain-transfer loss is introduced
to the pipeline. The proposed model is evaluated on the public dataset released
by the challenge organizer in MICCAI 2019, which consists of 45 sets of
multi-sequence CMR images. We demonstrate that the proposed adversarial
pipeline outperforms baseline deep-learning methods.Comment: 9 pages, 4 figures, conferenc
Active optical clock based on four-level quantum system
Active optical clock, a new conception of atomic clock, has been proposed
recently. In this report, we propose a scheme of active optical clock based on
four-level quantum system. The final accuracy and stability of two-level
quantum system are limited by second-order Doppler shift of thermal atomic
beam. To three-level quantum system, they are mainly limited by light shift of
pumping laser field. These limitations can be avoided effectively by applying
the scheme proposed here. Rubidium atom four-level quantum system, as a typical
example, is discussed in this paper. The population inversion between
and states can be built up at a time scale of s.
With the mechanism of active optical clock, in which the cavity mode linewidth
is much wider than that of the laser gain profile, it can output a laser with
quantum-limited linewidth narrower than 1 Hz in theory. An experimental
configuration is designed to realize this active optical clock.Comment: 5 page
Comment on ``Relativistic kinetic equations for electromagnetic, scalar and pseudoscalar interactions''
It is found that the extra quantum constraints to the spinor components of
the equal-time Wigner function given in a recent paper by Zhuang and Heinz
should vanish identically. We point out here the origin of the error and give
an interpretation of the result. However, the principal idea of obtaining a
complete equal-time transport theory by energy averaging the covariant theory
remains valid. The classical transport equation for the spin density is also
found to be incorrect. We give here the correct form of that equation and
discuss briefly its structure.Comment: 5 pages LaTe
Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration
The thermal and nonthermal pion production by sigma decay and its relation
with chiral symmetry restoration in a hot and dense matter are investigated.
The nonthermal decay into pions of sigma mesons which are popularly produced in
chiral symmetric phase leads to a low-momentum pion enhancement as a possible
signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure
Strain-induced energy band gap opening in two-dimensional bilayered silicon film
This work presents a theoretical study of the structural and electronic
properties of bilayered silicon films under in-plane biaxial strain/stress
using density functional theory. Atomic structures of the two-dimensional
silicon films are optimized by using both the local-density approximation and
generalized gradient approximation. In the absence of strain/stress, five
buckled hexagonal honeycomb structures of the bilayered silicon film have been
obtained as local energy minima and their structural stability has been
verified. These structures present a Dirac-cone shaped energy band diagram with
zero energy band gaps. Applying tensile biaxial strain leads to a reduction of
the buckling height. Atomically flat structures with zero bucking height have
been observed when the AA-stacking structures are under a critical biaxial
strain. Increase of the strain between 10.7% ~ 15.4% results in a band-gap
opening with a maximum energy band gap opening of ~168.0 meV obtained when
14.3% strain is applied. Energy band diagram, electron transmission efficiency,
and the charge transport property are calculated.Comment: 18 pages, 5 figures, 1 tabl
Price Elasticities of Key Agricultural Commodities in China
We estimate a simultaneous equations model of Chinese markets for wheat, rice, corn, pork, and poultry. Elasticities for consumption, feed demand, production, stocks demand, and foreign trade fall within the range of results from previous studies, and are reasonable magnitudes. China has market power in the trade for all commodities.Marketing,
Spin current through an ESR quantum dot: A real-time study
The spin transport in a strongly interacting spin-pump nano-device is studied
using the time-dependent variational-matrix-product-state (VMPS) approach. The
precession magnetic field generates a dissipationless spin current through the
quantum dot. We compute the real time spin current away from the equilibrium
condition. Both transient and stationary states are reached in the simulation.
The essentially exact results are compared with those from the Hartree-Fock
approximation (HFA). It is found that correlation effect on the physical
quantities at quasi-steady state are captured well by the HFA for small
interaction strength. However the HFA misses many features in the real time
dynamics. Results reported here may shed light on the understanding of the
ultra-fast processes as well as the interplay of the non-equilibrium and
strongly correlated effect in the transport properties.Comment: 5 pages, 5 figure
Floodlight Quantum Key Distribution: A Practical Route to Gbps Secret-Key Rates
The channel loss incurred in long-distance transmission places a significant
burden on quantum key distribution (QKD) systems: they must defeat a passive
eavesdropper who detects all the light lost in the quantum channel and does so
without disturbing the light that reaches the intended destination. The current
QKD implementation with the highest long-distance secret-key rate meets this
challenge by transmitting no more than one photon per bit [Opt. Express 21,
24550-24565 (2013)]. As a result, it cannot achieve the Gbps secret-key rate
needed for one-time pad encryption of large data files unless an impractically
large amount of multiplexing is employed. We introduce floodlight QKD (FL-QKD),
which floods the quantum channel with a high number of photons per bit
distributed over a much greater number of optical modes. FL-QKD offers security
against the optimum frequency-domain collective attack by transmitting less
than one photon per mode and using photon-coincidence channel monitoring, and
it is completely immune to passive eavesdropping. More importantly, FL-QKD is
capable of a 2 Gbps secret-key rate over a 50 km fiber link, without any
multiplexing, using available equipment, i.e., no new technology need be
developed. FL-QKD achieves this extraordinary secret-key rate by virtue of its
unprecedented secret-key efficiency, in bits per channel use, which exceeds
those of state-of-the-art systems by two orders of magnitude.Comment: 18 pages, 5 figure
- …
