547 research outputs found

    Short-range correlations in dilute atomic Fermi gases with spin-orbit coupling

    Full text link
    We study the short-range correlation strength of three dimensional spin half dilute atomic Fermi gases with spin-orbit coupling. The interatomic interaction is modeled by the contact pseudopotential. In the high temperature limit, we derive the expression for the second order virial expansion of the thermodynamic potential via the ladder diagrams. We further evaluate the second order virial expansion in the limit that the spin-orbit coupling constants are small, and find that the correlation strength between the fermions increases as the forth power of the spin-orbit coupling constants. At zero temperature, we consider the cases in which there are symmetric spin-orbit couplings in two or three directions. In such cases, there is always a two-body bound state of zero net momentum. In the limit that the average interparticle distance is much larger than the dimension of the two-body bound state, the system primarily consists of condensed bosonic molecules that fermions pair to form; we find that the correlation strength also becomes bigger compared to that in the absence of spin-orbit coupling. Our results indicate that generic spin-orbit coupling enhances the short-range correlations of the Fermi gases. Measurement of such enhancement by photoassociation experiment is also discussed.Comment: 7 pages, 4 figure

    Induced interactions in dilute atomic gases and liquid helium mixtures

    Full text link
    In dilute mixtures of two atomic gases, interactions between two minority atoms acquire a contribution due to interaction with the majority component. Using thermodynamic arguments, we derive expressions for this induced interaction for both fermions and bosons for arbitrary strength of the interaction between the two components. Implications of the work for the theory of dilute solutions of 3^3He in liquid 4^4He are discussed.Comment: 7 pages, 1 figure, NORDITA-2012-3

    Coherence and clock shifts in ultracold Fermi gases with resonant interactions

    Full text link
    Using arguments based on sum rules, we derive a general result for the average shifts of rf lines in Fermi gases in terms of interatomic interaction strengths and two-particle correlation functions. We show that near an interaction resonance shifts vary inversely with the atomic scattering length, rather than linearly as in dilute gases, thus accounting for the experimental observation that clock shifts remain finite at Feshbach resonances.Comment: 4 pages, 2 figures. Nordita preprint NORDITA-2007-2

    Clock shifts in a Fermi gas interacting with a minority component: a soluble model

    Full text link
    We consider the absorption spectrum of a Fermi gas mixed with a minority species when majority fermions are transferred to another internal state by an external probe. In the limit when the minority species is much more massive than the majority one, we show that the minority species may be treated as static impurities and the problem can be solved in closed form. The analytical results bring out the importance of vertex corrections, which change qualitatively the nature of the absorption spectrum. It is demonstrated that large line shifts are not associated with resonant interactions in general. We also show that the commonly used ladder approximation fails when the majority component is degenerate for large mass ratios between the minority and majority species and that bubble diagrams, which correspond to the creation of many particle--hole pairs, must be taken into account. We carry out detailed numerical calculations, which confirm the analytical insights and we point out the connection to shadowing phenomena in nuclear physics.Comment: 8 pages, 4 figures, NORDITA-2010-

    Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    Get PDF
    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures

    Impact Induced Delamination Detection and Quantification With Guided Wavefield Analysis

    Get PDF
    This paper studies impact induced delamination detection and quantification by using guided wavefield data and spatial wavenumber imaging. The complex geometry impact-like delamination is created through a quasi-static indentation on a CFRP plate. To detect and quantify the impact delamination in the CFRP plate, PZT-SLDV sensing and spatial wavenumber imaging are performed. In the PZT-SLDV sensing, the guided waves are generated from the PZT, and the high spatial resolution guided wavefields are measured by the SLDV. The guided wavefield data acquired from the PZT-SLDV sensing represent guided wave propagation in the composite laminate and include guided wave interaction with the delamination damage. The measured guided wavefields are analyzed through the spatial wavenumber imaging method, which generates an image containing the dominant local wavenumber at each spatial location. The spatial wavenumber imaging result for the simple single layer Teflon insert delamination provided quantitative information on delamination damage size and location. The location of delamination damage is indicated by the area with larger wavenumbers in the spatial wavenumber image. The impact-like delamination results only partially agreed with the damage size and shape. The results also demonstrated the dependence on excitation frequency. Future work will further investigate the accuracy of the wavenumber imaging method for real composite damage and the dependence on frequency of excitation

    On the existence of Einstein oscillators and thermal conductivity in bulk metallic glass

    Get PDF
    Low-temperature specific heat and thermal conductivity of bulk metallic glasses are measured to identify the primary vibrational modes associated with their unique structures. An Einstein-type localized vibrational mode with an Einstein temperature of 112 K112K is found in bulk metallic glass Ni59.5Nb33.6Sn6.9Ni59.5Nb33.6Sn6.9. This localized vibrational mode causes resonant scattering of phonons and results in the localization of phonons which leaves the phonon hopping conduction the limiting mechanism of thermal transport in bulk metallic glass Ni59.5Nb33.6Sn6.9Ni59.5Nb33.6Sn6.9 at high temperature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87816/2/031924_1.pd
    • …
    corecore