126 research outputs found

    Child labor handbook

    Get PDF
    This paper surveys many aspects and issues of child labor, including its causes and effects as well as policies associated with it. Child labor has come to be considered an expression of poverty, both a cause and an effect of underdevelopment. Child labor cannot be viewed in isolation from educational, health, fertility, and technological issues; and is not necessarily an aberration but a rational household response to an adverse economic environment. With this in mind, the following proposition was supported - that forbidding children to work or making school attendance compulsory without changing the economic environment may, if effectively enforced, leave children worse off. There is a tendency to believe that income redistribution from the rich to the poor is more powerful for reducing child labor than a universal income rise. It is also indicated that child labor cuts across policy boundaries: health, education, labor market, capital security, criminal law, international peace keeping, income growth, and distribution all have a bearing on child labor. Therefore, reducing child labor cannot be regarded as just another policy issue.Child Labor,Street Children,Youth and Governance,Children and Youth,Health Monitoring&Evaluation

    A physical application of Kerr-Schild groups

    Get PDF
    The present work deals with the search of useful physical applications of some generalized groups of metric transformations. We put forward different proposals and focus our attention on the implementation of one of them. Particularly, the results show how one can control very efficiently the kind of spacetimes related by a Generalized Kerr-Schild (GKS) Ansatz through Kerr-Schild groups. Finally a preliminar study regarding other generalized groups of metric transformations is undertaken which is aimed at giving some hints in new Ans\"atze to finding useful solutions to Einstein's equations.Comment: 18 page

    Covariant Perturbations of Schwarzschild Black Holes

    Get PDF
    We present a new covariant and gauge-invariant perturbation formalism for dealing with spacetimes having spherical symmetry (or some preferred spatial direction) in the background, and apply it to the case of gravitational wave propagation in a Schwarzschild black hole spacetime. The 1+3 covariant approach is extended to a `1+1+2 covariant sheet' formalism by introducing a radial unit vector in addition to the timelike congruence, and decomposing all covariant quantities with respect to this. The background Schwarzschild solution is discussed and a covariant characterisation is given. We give the full first-order system of linearised 1+1+2 covariant equations, and we show how, by introducing (time and spherical) harmonic functions, these may be reduced to a system of first-order ordinary differential equations and algebraic constraints for the 1+1+2 variables which may be solved straightforwardly. We show how both the odd and even parity perturbations may be unified by the discovery of a covariant, frame- and gauge-invariant, transverse-traceless tensor describing gravitational waves, which satisfies a covariant wave equation equivalent to the Regge-Wheeler equation for both even and odd parity perturbations. We show how the Zerilli equation may be derived from this tensor, and derive a similar transverse traceless tensor equivalent to this equation. The so-called `special' quasinormal modes with purely imaginary frequency emerge naturally. The significance of the degrees of freedom in the choice of the two frame vectors is discussed, and we demonstrate that, for a certain frame choice, the underlying dynamics is governed purely by the Regge-Wheeler tensor. The two transverse-traceless Weyl tensors which carry the curvature of gravitational waves are discussed.Comment: 23 pages, 1 figure, Revtex 4. Submitted to Classical and Quantum Gravity. Revised version is significantly streamlined with an important error corrected which simplifies the presentatio

    Bi-conformal vector fields and their applications

    Full text link
    We introduce the concept of bi-conformal transformation, as a generalization of conformal ones, by allowing two orthogonal parts of a manifold with metric \G to be scaled by different conformal factors. In particular, we study their infinitesimal version, called bi-conformal vector fields. We show the differential conditions characterizing them in terms of a "square root" of the metric, or equivalently of two complementary orthogonal projectors. Keeping these fixed, the set of bi-conformal vector fields is a Lie algebra which can be finite or infinite dimensional according to the dimensionality of the projectors. We determine (i) when an infinite-dimensional case is feasible and its properties, and (ii) a normal system for the generators in the finite-dimensional case. Its integrability conditions are also analyzed, which in particular provides the maximum number of linearly independent solutions. We identify the corresponding maximal spaces, and show a necessary geometric condition for a metric tensor to be a double-twisted product. More general ``breakable'' spaces are briefly considered. Many known symmetries are included, such as conformal Killing vectors, Kerr-Schild vector fields, kinematic self-similarity, causal symmetries, and rigid motions.Comment: Replaced version with some changes in the terminology and a new theorem. To appear in Classical and Quantum Gravit

    Paired-Associative Stimulation-Induced Long-term Potentiation-Like Motor Cortex Plasticity in Healthy Adolescents

    Get PDF
    ObjectiveThe objective of this study was to evaluate the feasibility of using paired-associative stimulation (PAS) to study excitatory and inhibitory plasticity in adolescents while examining variables that may moderate plasticity (such as sex and environment).MethodsWe recruited 34 healthy adolescents (aged 13–19, 13 males, 21 females). To evaluate excitatory plasticity, we compared mean motor-evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after PAS at 0, 15, and 30 min. To evaluate inhibitory plasticity, we evaluated the cortical silent period (CSP) elicited by single-pulse TMS in the contracted hand before and after PAS at 0, 15, and 30 min.ResultsAll participants completed PAS procedures. No adverse events occurred. PAS was well tolerated. PAS-induced significant increases in the ratio of post-PAS MEP to pre-PAS MEP amplitudes (p < 0.01) at all post-PAS intervals. Neither socioeconomic status nor sex was associated with post-PAS MEP changes. PAS induced significant CSP lengthening in males but not females.ConclusionPAS is a feasible, safe, and well-tolerated index of adolescent motor cortical plasticity. Gender may influence PAS-induced changes in cortical inhibition. PAS is safe and well tolerated by healthy adolescents and may be a novel tool with which to study adolescent neuroplasticity

    Decoherent Histories Approach to the Arrival Time Problem

    Get PDF
    We use the decoherent histories approach to quantum theory to compute the probability of a non-relativistic particle crossing x=0x=0 during an interval of time. For a system consisting of a single non-relativistic particle, histories coarse-grained according to whether or not they pass through spacetime regions are generally not decoherent, except for very special initial states, and thus probabilities cannot be assigned. Decoherence may, however, be achieved by coupling the particle to an environment consisting of a set of harmonic oscillators in a thermal bath. Probabilities for spacetime coarse grainings are thus calculated by considering restricted density operator propagators of the quantum Brownian motion model. We also show how to achieve decoherence by replicating the system NN times and then projecting onto the number density of particles that cross during a given time interval, and this gives an alternative expression for the crossing probability. The latter approach shows that the relative frequency for histories is approximately decoherent for sufficiently large NN, a result related to the Finkelstein-Graham-Hartle theorem.Comment: 42 pages, plain Te

    The Raychaudhuri equations: a brief review

    Get PDF
    We present a brief review on the Raychaudhuri equations. Beginning with a summary of the essential features of the original article by Raychaudhuri and subsequent work of numerous authors, we move on to a discussion of the equations in the context of alternate non--Riemannian spacetimes as well as other theories of gravity, with a special mention on the equations in spacetimes with torsion (Einstein--Cartan--Sciama--Kibble theory). Finally, we give an overview of some recent applications of these equations in General Relativity, Quantum Field Theory, String Theory and the theory of relativisitic membranes. We conclude with a summary and provide our own perspectives on directions of future research.Comment: 35 pages, two figures, to appear in the special issue of Pramana dedicated to the memory of A. K. Raychaudhur

    Clinical utility of combinatorial pharmacogenomic testing in depression: A Canadian patient- and rater-blinded, randomized, controlled trial

    Get PDF
    The pharmacological treatment of depression consists of stages of trial and error, with less than 40% of patients achieving remission during first medication trial. However, in a large, randomized-controlled trial (RCT) in the U.S. (“GUIDED”), significant improvements in response and remission rates were observed in patients who received treatment guided by combinatorial pharmacogenomic testing, compared to treatment-as-usual (TAU). Here we present results from the Canadian “GAPP-MDD” RCT. This 52-week, 3-arm, multi-center, participant- and rater-blinded RCT evaluated clinical outcomes among patients with depression whose treatment was guided by combinatorial pharmacogenomic testing compared to TAU. The primary outcome was symptom improvement (change in 17-item Hamilton Depression Rating Scale, HAM-D17) at week 8. Secondary outcomes included response (≥50% decrease in HAM-D17) and remission (HAM-D17 ≤ 7) at week 8. Numerically, patients in the guided-care arm had greater symptom improvement (27.6% versus 22.7%), response (30.3% versus 22.7%), and remission rates (15.7% versus 8.3%) compared to TAU, although these differences were not statistically significant. Given that the GAPP-MDD trial was ultimately underpowered to detect statistically significant differences in patient outcomes, it was assessed in parallel with the larger GUIDED RCT. We observed that relative improvements in response and remission rates were consistent between the GAPP-MDD (33.0% response, 89.0% remission) and GUIDED (31.0% response, 51.0% remission) trials. Together with GUIDED, the results from the GAPP-MDD trial indicate that combinatorial pharmacogenomic testing can be an effective tool to help guide depression treatment in the context of the Canadian healthcare setting (ClinicalTrials.gov NCT02466477)

    Tracing Cattle Breeds with Principal Components Analysis Ancestry Informative SNPs

    Get PDF
    The recent release of the Bovine HapMap dataset represents the most detailed survey of bovine genetic diversity to date, providing an important resource for the design and development of livestock production. We studied this dataset, comprising more than 30,000 Single Nucleotide Polymorphisms (SNPs) for 19 breeds (13 taurine, three zebu, and three hybrid breeds), seeking to identify small panels of genetic markers that can be used to trace the breed of unknown cattle samples. Taking advantage of the power of Principal Components Analysis and algorithms that we have recently described for the selection of Ancestry Informative Markers from genomewide datasets, we present a decision-tree which can be used to accurately infer the origin of individual cattle. In doing so, we present a thorough examination of population genetic structure in modern bovine breeds. Performing extensive cross-validation experiments, we demonstrate that 250-500 carefully selected SNPs suffice in order to achieve close to 100% prediction accuracy of individual ancestry, when this particular set of 19 breeds is considered. Our methods, coupled with the dense genotypic data that is becoming increasingly available, have the potential to become a valuable tool and have considerable impact in worldwide livestock production. They can be used to inform the design of studies of the genetic basis of economically important traits in cattle, as well as breeding programs and efforts to conserve biodiversity. Furthermore, the SNPs that we have identified can provide a reliable solution for the traceability of breed-specific branded products
    corecore