4,352 research outputs found

    SHG microscopic observations of polar state in Li-doped KTaO3 under electric field

    Full text link
    Incipient ferroelectric KTaO3 with off-center Li impurity of the critical concentration of 2.8 mol% was investigated in order to clarify the dipole glass state under electric field. Using optical second-harmonic generation (SHG) microscope, we observed a marked history dependence of SHG intensity through zero-field cooling (ZFC), zero-field heating (ZFH), field heating after ZFC (FH/ZFC) and FH after field cooling (FH/FC). These show different paths with respect to temperature: In the ZFC/ZFH process, weak SHG was observed at low temperature, while in the FH/ZFC process, relatively high SHG appears in a limited temperature range below TF depending on the field strength, and in the FC and FH/FC processes, the SHG exhibits ferroelectric-like temperature dependence: it appears at the freezing temperature of 50K, increases with decreasing temperature and has a tendency of saturation. These experimental results strongly suggest that dipole glass state or polar nano-clusters which gradually freezes with decreasing temperature is transformed into semi-macroscopic polar state under the electric field. However at sufficiently low temperature, the freezing is so strong that the electric field cannot enlarge the polar clusters. These experimental results show that the polar nano-cluster model similar to relaxors would be more relevant in KTaO3 doped with the critical concentration of Li. Further experiments on the anisotropy of SHG determine that the average symmetry of the field-induced polar phase is tetragonal 4mm or 4, which is also confirmed by the X-ray diffraction measurement.Comment: 26 pages, 8 figures, 1 tabl

    Fast multipole networks

    Full text link
    Two prerequisites for robotic multiagent systems are mobility and communication. Fast multipole networks (FMNs) enable both ends within a unified framework. FMNs can be organized very efficiently in a distributed way from local information and are ideally suited for motion planning using artificial potentials. We compare FMNs to conventional communication topologies, and find that FMNs offer competitive communication performance (including higher network efficiency per edge at marginal energy cost) in addition to advantages for mobility

    Complex joint probabilities as expressions of determinism in quantum mechanics

    Get PDF
    The density operator of a quantum state can be represented as a complex joint probability of any two observables whose eigenstates have non-zero mutual overlap. Transformations to a new basis set are then expressed in terms of complex conditional probabilities that describe the fundamental relation between precise statements about the three different observables. Since such transformations merely change the representation of the quantum state, these conditional probabilities provide a state-independent definition of the deterministic relation between the outcomes of different quantum measurements. In this paper, it is shown how classical reality emerges as an approximation to the fundamental laws of quantum determinism expressed by complex conditional probabilities. The quantum mechanical origin of phase spaces and trajectories is identified and implications for the interpretation of quantum measurements are considered. It is argued that the transformation laws of quantum determinism provide a fundamental description of the measurement dependence of empirical reality.Comment: 12 pages, including 1 figure, updated introduction includes references to the historical background of complex joint probabilities and to related work by Lars M. Johanse

    Residual Energies after Slow Quantum Annealing

    Full text link
    Features of the residual energy after the quantum annealing are investigated. The quantum annealing method exploits quantum fluctuations to search the ground state of classical disordered Hamiltonian. If the quantum fluctuation is reduced sufficiently slowly and linearly by the time, the residual energy after the quantum annealing falls as the inverse square of the annealing time. We show this feature of the residual energy by numerical calculations for small-sized systems and derive it on the basis of the quantum adiabatic theorem.Comment: 4 pages, 2 figure

    Irradiation-induced Ag nanocluster nucleation in silicate glasses: analogy with photography

    Full text link
    The synthesis of Ag nanoclusters in sodalime silicate glasses and silica was studied by optical absorption (OA) and electron spin resonance (ESR) experiments under both low (gamma-ray) and high (MeV ion) deposited energy density irradiation conditions. Both types of irradiation create electrons and holes whose density and thermal evolution - notably via their interaction with defects - are shown to determine the clustering and growth rates of Ag nanocrystals. We thus establish the influence of redox interactions of defects and silver (poly)ions. The mechanisms are similar to the latent image formation in photography: irradiation-induced photoelectrons are trapped within the glass matrix, notably on dissolved noble metal ions and defects, which are thus neutralized (reverse oxidation reactions are also shown to exist). Annealing promotes metal atom diffusion, which in turn leads to cluster nuclei formation. The cluster density depends not only on the irradiation fluence, but also - and primarily - on the density of deposited energy and the redox properties of the glass. Ion irradiation (i.e., large deposited energy density) is far more effective in cluster formation, despite its lower neutralization efficiency (from Ag+ to Ag0) as compared to gamma photon irradiation.Comment: 48 pages, 18 figures, revised version publ. in Phys. Rev. B, pdf fil

    Clinical application of endoscopic soft palate augmentation in the treatment of velopharyngeal insufficiency

    Get PDF
    Velopharyngeal structure augmentation with the injection of autologous fat tissue into the nasal mucosa of the soft palate has been reported previously. However, as the injection points in the velopharyngeal space cannot be observed directly, these injections may be difficult to perform accurately. This report describes a new endoscope-assisted approach in which the materials for velopharyngeal structure augmentation are administered while observing the injection points directly, also enabling adjustment of the amount of material injected. A case series of five patients aged 8–16 years who underwent endoscopic soft palate augmentation under general anaesthesia is reported. Autologous fat tissue was injected into the nasal mucosa of the soft palate using a needle-type device of an endoscope, and the effects of the treatment were evaluated. The injections were performed successfully, and the velopharyngeal function was improved. This new technique of endoscopy-assisted augmentation was useful for the treatment of velopharyngeal insufficiency.Isomura E.T., Matsukawa M., Yokota Y., et al. Clinical application of endoscopic soft palate augmentation in the treatment of velopharyngeal insufficiency. International Journal of Oral and Maxillofacial Surgery, (2023); https://doi.org/10.1016/j.ijom.2023.01.003
    • …
    corecore