234,473 research outputs found

    Properties of TiO2 thin films and a study of the TiO2-GaAs interface

    Get PDF
    Titanium dioxide (TiO2) films prepared by chemical vapor deposition were investigated in this study for the purpose of the application in the GaAs metal-insulator-semiconductor field-effect transistor. The degree of crystallization increases with the deposition temperature. The current-voltage study, utilizing an Al-TiO2-Al MIM structure, reveals that the d-c conduction through the TiO2 film is dominated by the bulk-limited Poole-Frenkel emission mechanism. The dependence of the resistivity of the TiO2 films on the deposition environment is also shown. The results of the capacitance-voltage study indicate that an inversion layer in an n-type substrate can be achieved in the MIS capacitor if the TiO2 films are deposited at a temperature higher than 275 C. A process of low temperature deposition followed by the pattern definition and a higher temperature annealing is suggested for device fabrications. A model, based on the assumption that the surface state densities are continuously distributed in energy within the forbidden band gap, is proposed to interpret the lack of an inversion layer in the Al-TiO2-GaAs MIS structure with the TiO2 films deposited at 200 C

    Development and evaluation of packet video schemes

    Get PDF
    Reflecting the two tasks proposed for the current year, namely a feasibility study of simulating the NASA network, and a study of progressive transmission schemes, are presented. The view of the NASA network, gleaned from the various technical reports made available to use, is provided. Also included is a brief overview of how the current simulator could be modified to accomplish the goal of simulating the NASA network. As the material in this section would be the basis for the actual simulation, it is important to make sure that it is an accurate reflection of the requirements on the simulator. Brief descriptions of the set of progressive transmission algorithms selected for the study are contained. The results available in the literature were obtained under a variety of different assumptions, not all of which are stated. As such, the only way to compare the efficiency and the implementational complexity of the various algorithms is to simulate them

    Systematic derivation of a rotationally covariant extension of the 2-dimensional Newell-Whitehead-Segel equation

    Full text link
    An extension of the Newell-Whitehead-Segel amplitude equation covariant under abritrary rotations is derived systematically by the renormalization group method.Comment: 8 pages, to appear in Phys. Rev. Letters, March 18, 199

    Surface Roughness Dominated Pinning Mechanism of Magnetic Vortices in Soft Ferromagnetic Films

    Full text link
    Although pinning of domain walls in ferromagnets is ubiquitous, the absence of an appropriate characterization tool has limited the ability to correlate the physical and magnetic microstructures of ferromagnetic films with specific pinning mechanisms. Here, we show that the pinning of a magnetic vortex, the simplest possible domain structure in soft ferromagnets, is strongly correlated with surface roughness, and we make a quantitative comparison of the pinning energy and spatial range in films of various thickness. The results demonstrate that thickness fluctuations on the lateral length scale of the vortex core diameter, i.e. an effective roughness at a specific length scale, provides the dominant pinning mechanism. We argue that this mechanism will be important in virtually any soft ferromagnetic film.Comment: 4 figure

    Field-Induced Resistive Switching in Metal-Oxide Interfaces

    Full text link
    We investigate the polarity-dependent field-induced resistive switching phenomenon driven by electric pulses in perovskite oxides. Our data show that the switching is a common occurrence restricted to an interfacial layer between a deposited metal electrode and the oxide. We determine through impedance spectroscopy that the interfacial layer is no thicker than 10 nm and that the switch is accompanied by a small capacitance increase associated with charge accumulation. Based on interfacial I-V characterization and measurement of the temperature dependence of the resistance, we propose that a field-created crystalline defect mechanism, which is controllable for devices, drives the switch.Comment: 4 pages, 3 figure
    • …
    corecore