215 research outputs found

    Large area growth and electrical properties of p-type WSe2 atomic layers.

    Get PDF
    Transition metal dichacogenides represent a unique class of two-dimensional layered materials that can be exfoliated into single or few atomic layers. Tungsten diselenide (WSe(2)) is one typical example with p-type semiconductor characteristics. Bulk WSe(2) has an indirect band gap (∼ 1.2 eV), which transits into a direct band gap (∼ 1.65 eV) in monolayers. Monolayer WSe(2), therefore, is of considerable interest as a new electronic material for functional electronics and optoelectronics. However, the controllable synthesis of large-area WSe(2) atomic layers remains a challenge. The studies on WSe(2) are largely limited by relatively small lateral size of exfoliated flakes and poor yield, which has significantly restricted the large-scale applications of the WSe(2) atomic layers. Here, we report a systematic study of chemical vapor deposition approach for large area growth of atomically thin WSe(2) film with the lateral dimensions up to ∼ 1 cm(2). Microphotoluminescence mapping indicates distinct layer dependent efficiency. The monolayer area exhibits much stronger light emission than bilayer or multilayers, consistent with the expected transition to direct band gap in the monolayer limit. The transmission electron microscopy studies demonstrate excellent crystalline quality of the atomically thin WSe(2). Electrical transport studies further show that the p-type WSe(2) field-effect transistors exhibit excellent electronic characteristics with effective hole carrier mobility up to 100 cm(2) V(-1) s(-1) for monolayer and up to 350 cm(2) V(-1) s(-1) for few-layer materials at room temperature, comparable or well above that of previously reported mobility values for the synthetic WSe(2) and comparable to the best exfoliated materials

    Enzymatic glucosylation of polyphenols using glucansucrases and branching sucrases of glycoside hydrolase family 70

    Get PDF
    Polyphenols exhibit various beneficial biological activities and represent very promising candidates as active compounds for food industry. However, the low solubility, poor stability and low bioavailability of polyphenols have severely limited their industrial applications. Enzymatic glycosylation is an effective way to improve the physicochemical properties of polyphenols. As efficient transglucosidases, glycoside hydrolase family 70 (GH70) glucansucrases naturally catalyze the synthesis of polysaccharides and oligosaccharides from sucrose. Notably, GH70 glucansucrases show broad acceptor substrate promiscuity and catalyze the glucosylation of a wide range of non-carbohydrate hydroxyl group-containing molecules, including benzenediol, phenolic acids, flavonoids and steviol glycosides. Branching sucrase enzymes, a newly established subfamily of GH70, are shown to possess a broader acceptor substrate binding pocket that acts efficiently for glucosylation of larger size polyphenols such as flavonoids. Here we present a comprehensive review of glucosylation of polyphenols using GH70 glucansucrase and branching sucrases. Their catalytic efficiency, the regioselectivity of glucosylation and the structure of generated products are described for these reactions. Moreover, enzyme engineering is effective for improving their catalytic efficiency and product specificity. The combined information provides novel insights on the glucosylation of polyphenols by GH70 glucansucrases and branching sucrases, and may promote their applications.</p

    Improving tidal turbine array performance through the optimisation of layout and yaw angles

    Get PDF
    Tidal stream currents change in magnitude and direction during flood and ebb tides. Setting the most appropriate yaw angles for a tidal turbine is not only important to account for the performance of a single turbine, but can also be significant for the interactions between the turbines within an array. In this paper, a partial differentiation equation (PDE) constrained optimisation approach is established based on the Thetis coastal ocean modelling framework. The PDE constraint takes the form here of the two-dimensional, depth-averaged shallow water equations which are used to simulate tidal elevations and currents in the presence of tidal stream turbine arrays. The Sequential Least Squares Programming (SLSQP) algorithm is applied with a gradient obtained via the adjoint method in order to perform array design optimisation. An idealised rectangular channel test case is studied to demonstrate this optimisation framework. Located in the centre of the computational domain, arrays comprised of 12 turbines are tested in aligned and staggered layouts. The setups are initially optimised based on their yaw angles alone. In turn, turbine coordinates and yaw angles are also optimized simultaneously. Results indicate that for an aligned turbine array case under steady state conditions, the energy output can be increased by approximately 80\% when considering yaw angle optimisation alone. For the staggered turbine array, the increase is approximately 30\%. The yaw optimised staggered array is able to outperform the yaw optimised aligned array by approximately 8\%. If both layout and the yaw angles of the turbines are considered within the optimisation then the increase is more significant compared with optimising yaw angle alone

    Visualizing the atomic-scale origin of metallic behavior in Kondo insulators

    Full text link
    A Kondo lattice is often electrically insulating at low temperatures. However, several recent experiments have detected signatures of bulk metallicity within this Kondo insulating phase. Here we visualize the real-space charge landscape within a Kondo lattice with atomic resolution using a scanning tunneling microscope. We discover nanometer-scale puddles of metallic conduction electrons centered around uranium-site substitutions in the heavy-fermion compound URu2_2Si2_2, and around samarium-site defects in the topological Kondo insulator SmB6_6. These defects disturb the Kondo screening cloud, leaving behind a fingerprint of the metallic parent state. Our results suggest that the mysterious 3D quantum oscillations measured in SmB6_6 could arise from these Kondo-lattice defects, although we cannot rule out other explanations. Our imaging technique could enable the development of atomic-scale charge sensors using heavy-fermion probes

    How to Report and Benchmark Emerging Field-Effect Transistors

    Full text link
    Emerging low-dimensional nanomaterials have been studied for decades in device applications as field-effect transistors (FETs). However, properly reporting and comparing device performance has been challenging due to the involvement and interlinking of multiple device parameters. More importantly, the interdisciplinarity of this research community results in a lack of consistent reporting and benchmarking guidelines. Here we report a consensus among the authors regarding guidelines for reporting and benchmarking important FET parameters and performance metrics. We provide an example of this reporting and benchmarking process for a two-dimensional (2D) semiconductor FET. Our consensus will help promote an improved approach for assessing device performance in emerging FETs, thus aiding the field to progress more consistently and meaningfully.Comment: 15 pages, 3 figures, Under review at Nature Electronic

    Emilin1 gene and essential hypertension: a two-stage association study in northern Han Chinese population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elastogenesis of elastic extracellular matrix (ECM) which was recognized as a major component of blood vessels has been believed for a long time to play only a passive role in the dynamic vascular changes of typical hypertension. Emilin1 gene participated in the transcription of ECM's formation and was recognized to modulate links TGF-β maturation to blood pressure homeostasis in animal study. Recently relevant advances urge further researches to investigate the role of Emilin1 gene in regulating TGF-β signals involved in elastogenesis and vascular cell defects of essential hypertension (EH).</p> <p>Methods</p> <p>We designed a two-stage case-control study and selected three single nucleotide polymorphisms (SNPs), rs3754734, rs2011616 and rs2304682 from the HapMap database, which covered Emilin1 gene. Totally 2,586 subjects were recruited from the International Collaborative Study of Cardiovascular Disease in Asia (InterASIA). In stage 1, all the three SNPs of the Emilin1 gene were genotyped and tested within a subsample including 503 cases and 490 controls, significant SNPs would enter into stage 2 including 814 cases with hypertension and 779 controls and analyze on the basis of testing total 2,586 subjects.</p> <p>Results</p> <p>In stage 1, single locus analyses showed that SNPs rs3754734 and rs2011616 had significant association with EH (P < 0.05). In stage 2, weak association for dominant model were observed by age stratification and odds ratio (ORs) of TG+GG vs. TT of rs3754734 were 0.768 (0.584-1.009), 0.985 (0.735-1.320) and 1.346 (1.003-1.806) in < 50, 50-59 and ≥ 60 years group and ORs of GA+AA vs. GG of rs2011616 were 0.745 (0.568-0.977), 1.013 (0.758-1.353) and 1.437 (1.072-1.926) in < 50, 50-59 and ≥ 60 years group respectively. Accordingly, significant interactions were detected between genotypes of rs3754734 and rs2011616 and age for EH, and ORs were 1.758 (1.180-2.620), P = 0.006 and 1.903 (1.281-2.825), P = 0.001, respectively. Results of haplotypes analysis showed that there weren't any haplotypes associated with EH directly, but the interaction of hap2 (GA) and age-group found to be significant after being adjusted for the covariates, OR was 1.220 (1.031-1.444), P value was 0.020.</p> <p>Conclusion</p> <p>Our findings don't support positive association of Emilin1 gene with EH, but the interaction of age and genotype variation of rs3754734 and rs2011616 might increase the risk to hypertension.</p

    Association between polymorphisms in the coagulation factor VII gene and coronary heart disease risk in different ethnicities: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have examined the association between polymorphisms in the coagulation factor VII gene and the risk of coronary heart disease (CHD), but those studies have been inconclusive. This study was conducted to assess the associations between these polymorphisms and CHD and evaluated the associations in different ethnicities.</p> <p>Methods</p> <p>Literature-based searching was conducted to collect data and two methods, namely fixed-effects and random-effects, were performed to pool the odds ratio (OR), together with the 95% confidence interval (CI). Publication bias and between-study heterogeneity were also examined.</p> <p>Results</p> <p>Thirty-nine case-control studies of the three polymorphisms, R353Q (rs6046), HVR4 and -323Ins10 (rs36208070) in factor VII gene and CHD were enrolled in this meta-analysis, including 9,151 cases of CHD and 14,099 controls for R353Q, 2,863 cases and 2,727 controls for HVR4, and 2,862 cases and 4,240 controls for -323Ins10. Significant association was only found in Asian population for R353Q (Q vs R), with pooled OR of 0.70(95%CI: 0.55, 0.90). For the -323Ins10 polymorphism (10 vs 0), we found significant associations in both Asian and European populations, with pooled ORs of 0.74(95%CI: 0.61, 0.88) and 0.63(95%CI: 0.53, 0.74), respectively. Marginal significant association was found between HVR4 (H7 vs H5+H6) and CHD (OR = 0.88, 95% CI: 0.78, 1.00). There was no evidence of publication bias, but between-study heterogeneity was found in the analyses.</p> <p>Conclusions</p> <p>The -323Ins10 polymorphism in factor VII gene is significantly associated with CHD in both Asian and European populations, while R353Q polymorphism showed trend for association with CHD in Asians. Lack of association was found for HVR4 polymorphism. Further studies are needed to confirm the association, especially for -323Ins10 polymorphism.</p
    • …
    corecore