8,400 research outputs found

    Three-Dimensional Topological Insulator in a Magnetic Field: Chiral Side Surface States and Quantized Hall Conductance

    Full text link
    Low energy excitation of surface states of a three-dimensional topological insulator (3DTI) can be described by Dirac fermions. By using a tight-binding model, the transport properties of the surface states in a uniform magnetic field is investigated. It is found that chiral surface states parallel to the magnetic field are responsible to the quantized Hall (QH) conductance (2n+1)e2h(2n+1)\frac{e^2}{h} multiplied by the number of Dirac cones. Due to the two-dimension (2D) nature of the surface states, the robustness of the QH conductance against impurity scattering is determined by the oddness and evenness of the Dirac cone number. An experimental setup for transport measurement is proposed

    Reexamination of the galaxy formation-regulated gas evolution model in groups and clusters

    Get PDF
    As an alternative explanation of the entropy excess and the steepening of the X-ray luminosity-temperature relation in groups and clusters, the galaxy formation-regulated gas evolution (GG) model proposed recently by Bryan makes an attempt to incorporate the formation of galaxies into the evolution of gas without additional heating by nongravitational processes. This seems to provide a unified scheme for our understanding of the structures and evolution of both galaxies and gas in groups and clusters. In this paper, we present an extensive comparison of the X-ray properties of groups and clusters predicted by the GG model and those revealed by current X-ray observations, using various large data sources in the literature and also taking the observational selection effects into account. These include an independent check of the fundamental working hypothesis of the GG model, i.e., galaxy formation was less efficient in rich clusters than in groups, a new test of the radial gas distributions revealed by both the gas mass fraction and the X-ray surface brightness profiles, and an reexamination of the X-ray luminosity-temperature and entropy-temperature relations. In particular, it shows that the overall X-ray surface brightness profiles predicted by the GG model are very similar in shape, insensitive to the X-ray temperature, and the shallower X-ray surface brightness profiles seen at low-temperature systems may arise from the current observational selection effect. This can be used as the simplest approach to distinguishing between the GG model and the preheating scenario. The latter yields an intrinsically shallower gas distribution in groups than in rich clusters.Comment: 30 pages, 10 figures, accepted for publication in Ap

    The Bipolar II depression questionnaire: A self-report tool for detecting Bipolar II depression

    Get PDF
    Bipolar II (BP-II) depression is often misdiagnosed as unipolar (UP) depression, resulting in suboptimal treatment. Tools for differentiating between these two types of depression are lacking. This study aimed to develop a simple, self-report screening instrument to help distinguish BP-II depression from UP depressive disorder. A prototype BP-II depression questionnaire (BPIIDQ-P) was constructed following a literature review, panel discussions and a field trial. Consecutively assessed patients with a diagnosis of depressive disorder or BP with depressive episodes completed the BPIIDQ-P at a psychiatric outpatient clinic in Hong Kong between October and December 2013. Data were analyzed using discriminant analysis and logistic regression. Of the 298 subjects recruited, 65 (21.8%) were males and 233 (78.2%) females. There were 112 (37.6%) subjects with BP depression [BP-I = 42 (14.1%), BP-II = 70 (23.5%)] and 182 (62.4%) with UP depression. Based on family history, age at onset, postpartum depression, episodic course, attacks of anxiety, hypersomnia, social phobia and agoraphobia, the 8-item BPIIDQ-8 was constructed. The BPIIDQ-8 differentiated subjects with BP-II from those with UP depression with a sensitivity/specificity of 0.75/0.63 for the whole sample and 0.77/0.72 for a female subgroup with a history of childbirth. The BPIIDQ-8 can differentiate BP-II from UP depression at the secondary care level with satisfactory to good reliability and validity. It has good potential as a screening tool for BP-II depression in primary care settings. Recall bias, the relatively small sample size, and the high proportion of females in the BP-II sample limit the generalization of the results

    The K giant stars from the LAMOST survey data I: identification, metallicity, and distance

    Full text link
    We present a support vector machine classifier to identify the K giant stars from the LAMOST survey directly using their spectral line features. The completeness of the identification is about 75% for tests based on LAMOST stellar parameters. The contamination in the identified K giant sample is lower than 2.5%. Applying the classification method to about 2 million LAMOST spectra observed during the pilot survey and the first year survey, we select 298,036 K giant candidates. The metallicities of the sample are also estimated with uncertainty of 0.130.290.13\sim0.29\,dex based on the equivalent widths of Mgb_{\rm b} and iron lines. A Bayesian method is then developed to estimate the posterior probability of the distance for the K giant stars, based on the estimated metallicity and 2MASS photometry. The synthetic isochrone-based distance estimates have been calibrated using 7 globular clusters with a wide range of metallicities. The uncertainty of the estimated distance modulus at K=11K=11\,mag, which is the median brightness of the K giant sample, is about 0.6\,mag, corresponding to 30\sim30% in distance. As a scientific verification case, the trailing arm of the Sagittarius stream is clearly identified with the selected K giant sample. Moreover, at about 80\,kpc from the Sun, we use our K giant stars to confirm a detection of stream members near the apo-center of the trailing tail. These rediscoveries of the features of the Sagittarius stream illustrate the potential of the LAMOST survey for detecting substructures in the halo of the Milky Way.Comment: 24 pages, 20 figures, submitted to Ap

    Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-Line Region

    Full text link
    This paper reports results of the third-year campaign of monitoring super-Eddington accreting massive black holes (SEAMBHs) in active galactic nuclei (AGNs) between 2014-2015. Ten new targets were selected from quasar sample of Sloan Digital Sky Survey (SDSS), which are generally more luminous than the SEAMBH candidates in last two years. Hβ\beta lags (τHβ\tau_{_{\rm H\beta}}) in five of the 10 quasars have been successfully measured in this monitoring season. We find that the lags are generally shorter, by large factors, than those of objects with same optical luminosity, in light of the well-known RHβL5100R_{_{\rm H\beta}}-L_{5100} relation. The five quasars have dimensionless accretion rates of M˙=10103\dot{\mathscr{M}}=10-10^3. Combining measurements of the previous SEAMBHs, we find that the reduction of Hβ\beta lags tightly depends on accretion rates, τHβ/τRLM˙0.42\tau_{_{\rm H\beta}}/\tau_{_{R-L}}\propto\dot{\mathscr{M}}^{-0.42}, where τRL\tau_{_{R-L}} is the Hβ\beta lag from the normal RHβL5100R_{_{\rm H\beta}}-L_{5100} relation. Fitting 63 mapped AGNs, we present a new scaling relation for the broad-line region: RHβ=α144β1min[1,(M˙/M˙c)γ1]R_{_{\rm H\beta}}=\alpha_1\ell_{44}^{\beta_1}\,\min\left[1,\left(\dot{\mathscr{M}}/\dot{\mathscr{M}}_c\right)^{-\gamma_1}\right], where 44=L5100/1044erg s1\ell_{44}=L_{5100}/10^{44}\,\rm erg~s^{-1} is 5100 \AA\ continuum luminosity, and coefficients of α1=(29.62.8+2.7)\alpha_1=(29.6_{-2.8}^{+2.7}) lt-d, β1=0.560.03+0.03\beta_1=0.56_{-0.03}^{+0.03}, γ1=0.520.16+0.33\gamma_1=0.52_{-0.16}^{+0.33} and M˙c=11.196.22+2.29\dot{\mathscr{M}}_c=11.19_{-6.22}^{+2.29}. This relation is applicable to AGNs over a wide range of accretion rates, from 10310^{-3} to 10310^3. Implications of this new relation are briefly discussed.Comment: 15 pages, 9 figures, 5 table, accepted for publication in The Astrophysical Journa

    ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer.

    Get PDF
    The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa

    Reverberation Mapping of the Broad-line Region in NGC 5548: Evidence for Radiation Pressure?

    Full text link
    NGC 5548 is the best-observed reverberation-mapped active galactic nucleus with long-term, intensive monitoring. Here we report results from a new observational campaign between January and July, 2015. We measure the centroid time lag of the broad Hβ\beta emission line with respect to the 5100 \AA continuum and obtain τcent=7.200.35+1.33\tau_{\rm cent} = 7.20^{+1.33}_{-0.35} days in the rest frame. This yields a black hole mass of M=8.712.61+3.21M_{\bullet}=8.71^{+3.21}_{-2.61} x107M 10^{7}M_{\odot} using a broad Hβ\beta line dispersion of 3124±3023124\pm302 km s1^{-1} and a virial factor of fBLR=6.3±1.5f_{_{\rm BLR}}=6.3\pm1.5 for the broad-line region (BLR), consistent with the mass measurements from previous Hβ\beta campaigns. The high-quality data allow us to construct a velocity-binned delay map for the broad Hβ\beta line, which shows a symmetric response pattern around the line center, a plausible kinematic signature of virialized motion of the BLR. Combining all the available measurements of Hβ\beta time lags and the associated mean 5100 {\AA} luminosities over 18 campaigns between 1989 and 2015, we find that the Hβ\beta BLR size varies with the mean optical luminosity, but, interestingly, with a possible delay of 2.351.25+3.472.35_{-1.25}^{+3.47} yrs. This delay coincides with the typical BLR dynamical timescale of NGC 5548, indicating that the BLR undergoes dynamical changes, possibly driven by radiation pressure.Comment: 24 pages, 10 figures, 5 tables; accepted for publication in ApJ; accepted 2016 May

    Transport and magnetic properties of La-doped CaFe2_2As2_2

    Full text link
    We measured the transport properties and susceptibility of single crystals Ca1x_{1-x}Lax_xFe2_2As2_2(x=0, 0.05, 0.1, 0.15, 0.19 and 0.25). Large in-plane resistivity anisotropy similar to that in Co-doped 122 iron-pnictides is observed although no transition metals were introduced in the FeAs-plane. The in-plane resistivity anisotropy gradually increases with La doping below TSDW_{SDW}, being different from the hole-doped 122 superconductors. The susceptibilities of the samples show that La doping leads to suppression of SDW and induces a Curie-Weiss-like behavior at low temperature, which is much stronger than the other 122 iron-based superconductors

    Kinematics of the Broad-line Region of 3C 273 from a Ten-year Reverberation Mapping Campaign

    Get PDF
    Despite many decades of study, the kinematics of the broad-line region of 3C~273 are still poorly understood. We report a new, high signal-to-noise, reverberation mapping campaign carried out from November 2008 to March 2018 that allows the determination of time lags between emission lines and the variable continuum with high precision. The time lag of variations in Hβ\beta relative to those of the 5100 Angstrom continuum is 146.812.1+8.3146.8_{-12.1}^{+8.3} days in the rest frame, which agrees very well with the Paschen-α\alpha region measured by the GRAVITY at The Very Large Telescope Interferometer. The time lag of the Hγ\gamma emission line is found to be nearly the same as for Hβ\beta. The lag of the Fe II emission is 322.057.9+55.5322.0_{-57.9}^{+55.5} days, longer by a factor of \sim2 than that of the Balmer lines. The velocity-resolved lag measurements of the Hβ\beta line show a complex structure which can be possibly explained by a rotation-dominated disk with some inflowing radial velocity in the Hβ\beta-emitting region. Taking the virial factor of fBLR=1.3f_{\rm BLR} = 1.3, we derive a BH mass of M=4.10.4+0.3×108MM_{\bullet} = 4.1_{-0.4}^{+0.3} \times 10^8 M_{\odot} and an accretion rate of 9.3LEddc29.3\,L_{\rm Edd}\,c^{-2} from the Hβ\beta line. The decomposition of its HSTHST images yields a host stellar mass of M=1011.3±0.7MM_* = 10^{11.3 \pm 0.7} M_\odot, and a ratio of M/M2.0×103M_{\bullet}/M_*\approx 2.0\times 10^{-3} in agreement with the Magorrian relation. In the near future, it is expected to compare the geometrically-thick BLR discovered by the GRAVITY in 3C 273 with its spatially-resolved torus in order to understand the potential connection between the BLR and the torus.Comment: 17 pages, 12 figures, 6 tables, accepted for publication in The Astrophysical Journa
    corecore