258 research outputs found

    Helices at Interfaces

    Full text link
    Helically coiled filaments are a frequent motif in nature. In situations commonly encountered in experiments coiled helices are squeezed flat onto two dimensional surfaces. Under such 2-D confinement helices form "squeelices" - peculiar squeezed conformations often resembling looped waves, spirals or circles. Using theory and Monte-Carlo simulations we illuminate here the mechanics and the unusual statistical mechanics of confined helices and show that their fluctuations can be understood in terms of moving and interacting discrete particle-like entities - the "twist-kinks". We show that confined filaments can thermally switch between discrete topological twist quantized states, with some of the states exhibiting dramatically enhanced circularization probability while others displaying surprising hyperflexibility

    Swimming Microorganisms in Gels

    Get PDF

    Kinematics of the swimming of Spiroplasma

    Full text link
    \emph{Spiroplasma} swimming is studied with a simple model based on resistive-force theory. Specifically, we consider a bacterium shaped in the form of a helix that propagates traveling-wave distortions which flip the handedness of the helical cell body. We treat cell length, pitch angle, kink velocity, and distance between kinks as parameters and calculate the swimming velocity that arises due to the distortions. We find that, for a fixed pitch angle, scaling collapses the swimming velocity (and the swimming efficiency) to a universal curve that depends only on the ratio of the distance between kinks to the cell length. Simultaneously optimizing the swimming efficiency with respect to inter-kink length and pitch angle, we find that the optimal pitch angle is 35.5∘^\circ and the optimal inter-kink length ratio is 0.338, values in good agreement with experimental observations.Comment: 4 pages, 5 figure

    The role of body rotation in bacterial flagellar bundling

    Full text link
    In bacterial chemotaxis, E. coli cells drift up chemical gradients by a series of runs and tumbles. Runs are periods of directed swimming, and tumbles are abrupt changes in swimming direction. Near the beginning of each run, the rotating helical flagellar filaments which propel the cell form a bundle. Using resistive-force theory, we show that the counter-rotation of the cell body necessary for torque balance is sufficient to wrap the filaments into a bundle, even in the absence of the swirling flows produced by each individual filament

    Biophysics at the coffee shop: lessons learned working with George Oster

    Get PDF
    Over the past 50 years, the use of mathematical models, derived from physical reasoning, to describe molecular and cellular systems has evolved from an art of the few to a cornerstone of biological inquiry. George Oster stood out as a pioneer of this paradigm shift from descriptive to quantitative biology not only through his numerous research accomplishments, but also through the many students and postdocs he mentored over his long career. Those of us fortunate enough to have worked with George agree that his sharp intellect, physical intuition and passion for scientific inquiry not only inspired us as scientists but also greatly influenced the way we conduct research. We would like to share a few important lessons we learned from George in honor of his memory and with the hope that they may inspire future generations of scientists.Comment: 22 pages, 3 figures, accepted in Molecular Biology of the Cel

    Beating patterns of filaments in viscoelastic fluids

    Full text link
    Many swimming microorganisms, such as bacteria and sperm, use flexible flagella to move through viscoelastic media in their natural environments. In this paper we address the effects a viscoelastic fluid has on the motion and beating patterns of elastic filaments. We treat both a passive filament which is actuated at one end, and an active filament with bending forces arising from internal motors distributed along its length. We describe how viscoelasticity modifies the hydrodynamic forces exerted on the filaments, and how these modified forces affect the beating patterns. We show how high viscosity of purely viscous or viscoelastic solutions can lead to the experimentally observed beating patterns of sperm flagella, in which motion is concentrated at the distal end of the flagella

    Twirling Elastica: Kinks, Viscous Drag, and Torsional Stress

    Full text link
    Biological filaments such as DNA or bacterial flagella are typically curved in their natural states. To elucidate the interplay of viscous drag, twisting, and bending in the overdamped dynamics of such filaments, we compute the steady-state torsional stress and shape of a rotating rod with a kink. Drag deforms the rod, ultimately extending or folding it depending on the kink angle. For certain kink angles and kink locations, both states are possible at high rotation rates. The agreement between our macroscopic experiments and the theory is good, with no adjustable parameters.Comment: 4 pages, 4 figure

    Network development in biological gels: role in lymphatic vessel development

    Get PDF
    In this paper, we present a model that explains the prepatterning of lymphatic vessel morphology in collagen gels. This model is derived using the theory of two phase rubber material due to Flory and coworkers and it consists of two coupled fourth order partial differential equations describing the evolution of the collagen volume fraction, and the evolution of the proton concentration in a collagen implant; as described in experiments of Boardman and Swartz (Circ. Res. 92, 801–808, 2003). Using linear stability analysis, we find that above a critical level of proton concentration, spatial patterns form due to small perturbations in the initially uniform steady state. Using a long wavelength reduction, we can reduce the two coupled partial differential equations to one fourth order equation that is very similar to the Cahn–Hilliard equation; however, it has more complex nonlinearities and degeneracies. We present the results of numerical simulations and discuss the biological implications of our model

    Twirling and Whirling: Viscous Dynamics of Rotating Elastica

    Full text link
    Motivated by diverse phenomena in cellular biophysics, including bacterial flagellar motion and DNA transcription and replication, we study the overdamped nonlinear dynamics of a rotationally forced filament with twist and bend elasticity. Competition between twist injection, twist diffusion, and writhing instabilities is described by a novel pair of coupled PDEs for twist and bend evolution. Analytical and numerical methods elucidate the twist/bend coupling and reveal two dynamical regimes separated by a Hopf bifurcation: (i) diffusion-dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion, or whirling. The consequences of these phenomena for self-propulsion are investigated, and experimental tests proposed.Comment: To be published in Physical Review Letter
    • …
    corecore