8 research outputs found

    Inhibitors of Helicobacter pylori Protease HtrA Found by ‘Virtual Ligand’ Screening Combat Bacterial Invasion of Epithelia

    Get PDF
    Background: The human pathogen Helicobacter pylori (H. pylori) is a main cause for gastric inflammation and cancer. Increasing bacterial resistance against antibiotics demands for innovative strategies for therapeutic intervention. Methodology/Principal Findings: We present a method for structure-based virtual screening that is based on the comprehensive prediction of ligand binding sites on a protein model and automated construction of a ligand-receptor interaction map. Pharmacophoric features of the map are clustered and transformed in a correlation vector (‘virtual ligand’) for rapid virtual screening of compound databases. This computer-based technique was validated for 18 different targets of pharmaceutical interest in a retrospective screening experiment. Prospective screening for inhibitory agents was performed for the protease HtrA from the human pathogen H. pylori using a homology model of the target protein. Among 22 tested compounds six block E-cadherin cleavage by HtrA in vitro and result in reduced scattering and wound healing of gastric epithelial cells, thereby preventing bacterial infiltration of the epithelium. Conclusions/Significance: This study demonstrates that receptor-based virtual screening with a permissive (‘fuzzy’) pharmacophore model can help identify small bioactive agents for combating bacterial infection

    Helicobacter pylori Activates Calpain via Toll-Like Receptor 2 To Disrupt Adherens Junctions in Human Gastric Epithelial Cells â–¿

    No full text
    Helicobacter pylori is a risk factor for the development of gastritis, gastroduodenal ulcers, and gastric adenocarcinoma. H. pylori-induced disruption of epithelial adherens junctions (AJs) is thought to promote the development of severe disease; however, the mechanisms whereby H. pylori alters AJ structure remain incompletely understood. The present study demonstrates that H. pylori infection in human patients is associated with elevated serum levels of an 80-kDa E-cadherin ectodomain, whose presence is independent of the presence of serum antibodies against CagA. In vitro, a heat-labile H. pylori surface component activates the host protease calpain in human gastric MKN45 cells independently of the virulence factors CagA and VacA. H. pylori-induced calpain activation results in cleavage of E-cadherin to produce a 100-kDa truncated form and induce relocalization of E-cadherin and β-catenin. Stimulation of MKN45 cells with the toll-like receptor 2 (TLR2) ligand P3C activated calpain and disrupted E-cadherin and β-catenin in a pattern similar to that induced by H. pylori. Inhibition of TLR2 prevented H. pylori-induced calpain activation and AJ disassembly. Together, these findings identify a novel pathway whereby H. pylori activates calpain via TLR2 to disrupt gastric epithelial AJ structure

    p120 and Kaiso Regulate Helicobacter pylori-induced Expression of Matrix Metalloproteinase-7

    No full text
    Helicobacter pylori is the strongest known risk factor for gastric adenocarcinoma, yet only a fraction of infected persons develop cancer. One H. pylori constituent that augments disease risk is the cytotoxin-associated gene (cag) pathogenicity island, which encodes a secretion system that translocates bacterial effector molecules into host cells. Matrix metalloproteinase (MMP)-7, a member of a family of enzymes with tumor-initiating properties, is overexpressed in premalignant and malignant gastric lesions, and H. pylori cag+ strains selectively increase MMP-7 protein levels in gastric epithelial cells in vitro and in vivo. We now report that H. pylori-mediated mmp-7 induction is transcriptionally regulated via aberrant activation of p120-catenin (p120), a component of adherens junctions. H. pylori increases mmp-7 mRNA levels in a cag- and p120-dependent manner and induces translocation of p120 to the nucleus in vitro and in a novel ex vivo gastric gland culture system. Nuclear translocation of p120 in response to H. pylori relieves Kaiso-mediated transcriptional repression of mmp-7, which is implicated in tumorigenesis. These results indicate that selective and coordinated induction of mmp-7 expression by H. pylori cag+ isolates may explain in part the augmentation in gastric cancer risk associated with these strains

    Virulence Mechanisms and Persistence Strategies of the Human Gastric Pathogen Helicobacter pylori

    No full text
    corecore