35 research outputs found

    Evolutionary conservation and positive selection of influenza A nucleoprotein CTL epitopes for universal vaccination

    No full text
    Influenza (flu) infection is a leading cause of respiratory diseases and death worldwide. Although seasonal flu vaccines are effective at reducing morbidity and mortality, such effects rely on the odds of successful prediction of the upcoming viral strains. Additional threats from emerging flu viruses that we cannot predict and avian flu viruses that can be directly transmitted to humans urge the strategic development of universal vaccination that can protect against flu viruses of different subtypes and across species. Annual flu vaccines elicit mainly humoral responses. Under circumstances when antibodies induced by vaccination fail to recognize and neutralize the emerging virus adequately, virus‐specific cytotoxic T lymphocytes (CTLs) are the major contributors to the control of viral replication and elimination of infected cells. Our studies exploited the evolutionary conservation of influenza A nucleoprotein (NP) and the fact that NP‐specific CTL responses pose a constant selecting pressure on functional CTL epitopes to screen for NP epitopes that are highly conserved among heterosubtypes but are subjected to positive selection historically. We identified a region on NP that is evolutionarily conserved and historically positively selected (NP(137–182)) and validated that it contains an epitope that is functional in eliciting NP‐specific CTL responses and immunity that can partially protect immunized mice against lethal dose infection of a heterosubtypic influenza A virus. Our proof‐of‐concept study supports the hypothesis that evolutionary conservation and positive selection of influenza NP can be exploited to identify functional CTL epitope to elicit cross‐protection against different heterosubtypes, therefore, to help develop strategies to modify flu vaccine formula for a broader and more durable protective immunity

    TCR/ITK Signaling in Type 1 Regulatory T cells

    No full text
    Type 1 regulatory T (Tr1) cells can modulate inflammation through multiple direct and indirect molecular and cellular mechanisms and have demonstrated potential for anti-inflammatory therapies. Tr1 cells do not express the master transcription factor of conventional regulatory T cells, Foxp3, but express high levels of the immunomodulatory cytokine, IL-10. IL-2-inducible T-cell kinase (ITK) is conserved between mouse and human and is highly expressed in T cells. ITK signaling downstream of the T-cell receptor (TCR) is critical for T-cell subset differentiation and function. Upon activation by TCR, ITK is critical for Ras activation, leading to downstream activation of MAPKs and upregulation of IRF4, which further enable Tr1 cell differentiation and suppressive function. We summarize here the structure, signaling pathway, and function of ITK in T-cell lineage designation, with an emphasis on Tr1 cell development and function

    Mutations and Evolution of the SARS-CoV-2 Spike Protein

    No full text
    The SARS-CoV-2 spike protein mediates target recognition, cellular entry, and ultimately the viral infection that leads to various levels of COVID-19 severities. Positive evolutionary selection of mutations within the spike protein has led to the genesis of new SARS-CoV-2 variants with greatly enhanced overall fitness. Given the trend of variants with increased fitness arising from spike protein alterations, it is critical that the scientific community understand the mechanisms by which these mutations alter viral functions. As of March 2022, five SARS-CoV-2 strains were labeled “variants of concern” by the World Health Organization: the Alpha, Beta, Gamma, Delta, and Omicron variants. This review summarizes the potential mechanisms by which the common mutations on the spike protein that occur within these strains enhance the overall fitness of their respective variants. In addressing these mutations within the context of the SARS-CoV-2 spike protein structure, spike/receptor binding interface, spike/antibody binding, and virus neutralization, we summarize the general paradigms that can be used to estimate the effects of future mutations along SARS-CoV-2 evolution

    PD-1 and ICOS counter-regulate tissue resident regulatory T cell development and IL-10 production during flu

    No full text
    Regulatory T cells that express the transcription factor Foxp3 (Treg cells) are a highly heterogenous population of immunoregulatory cells critical for maintaining immune homeostasis and preventing immunopathology during infections. Tissue resident Treg (TR-Treg) cells are maintained within nonlymphoid tissues and have been shown to suppress proinflammatory tissue resident T cell responses and promote tissue repair. Human populations are repetitively exposed to influenza infections and lung tissue resident effector T cell responses are associated with flu-induced long-term pulmonary sequelae. The kinetics of TR-Treg cell development and molecular features of TR-Treg cells during repeated and/or long-term flu infections are unclear. Utilizing a Foxp3/IL-10 dual reporter mouse model along with intravascular fluorescent labeling, we characterized the TR-Treg cell responses to repetitive heterosubtypic influenza infections. We found lung tissue resident Treg cells accumulated and expressed high levels of co-inhibitory and co-stimulatory receptors post primary and secondary infections. Blockade of PD-1 or ICOS signaling reveals that PD-1 and ICOS signaling pathways counter-regulate TR-Treg cell expansion and IL-10 production, during secondary influenza infection. Furthermore, the virus-specific TR-Treg cell response displayed distinct kinetics, when compared to conventional CD4 tissue resident memory T cells, during secondary flu infection. Our results provide insight into the tissue resident Foxp3 regulatory T cell response during repetitive flu infections, which may be applicable to other respiratory infectious diseases such as tuberculosis and COVID

    Tuning T helper cell differentiation by ITK

    No full text
    CD4+ effector T cells effectuate T cell immune responses, producing cytokines to orchestrate the nature and type of immune responses. The non-receptor tyrosine kinase IL-2 inducible T cell kinase (ITK), a mediator of T cell Receptor signaling, plays a critical role in tuning the development of these effector cells. In this review we discussed the role that signals downstream of ITK, including the Ras/MAPK pathway, play in differentially controlling the differentiation of TH17, Foxp3+ T regulatory (Treg) cells, and Type 1 regulatory T (Tr1) cells, supporting a model of ITK signals controlling a decision point in the effector T cell differentiation process

    Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery

    No full text
    Adeno-associated viral (AAV) vectors have emerged as the leading gene delivery platform for gene therapy and vaccination. Three AAV-based gene therapy drugs, Glybera, LUXTURNA, and ZOLGENSMA were approved between 2012 and 2019 by the European Medicines Agency and the United States Food and Drug Administration as treatments for genetic diseases hereditary lipoprotein lipase deficiency (LPLD), inherited retinal disease (IRD), and spinal muscular atrophy (SMA), respectively. Despite these therapeutic successes, clinical trials have demonstrated that host anti-viral immune responses can prevent the long-term gene expression of AAV vector-encoded genes. Therefore, it is critical that we understand the complex relationship between AAV vectors and the host immune response. This knowledge could allow for the rational design of optimized gene transfer vectors capable of either subverting host immune responses in the context of gene therapy applications, or stimulating desirable immune responses that generate protective immunity in vaccine applications to AAV vector-encoded antigens. This review provides an overview of our current understanding of the AAV-induced immune response and discusses potential strategies by which these responses can be manipulated to improve AAV vector-mediated gene transfer
    corecore