193 research outputs found

    Directional wetting in anisotropic inverse opals

    Get PDF
    Porous materials display interesting transport phenomena due to the restricted motion of fluids within the nano- to micro-scale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy

    Self-similarity of contact line depinning from textured surfaces

    Get PDF
    The mobility of drops on surfaces is important in many biological and industrial processes, but the phenomena governing their adhesion, which is dictated by the morphology of the three-phase contact line, remain unclear. Here we describe a technique for measuring the dynamic behaviour of the three-phase contact line at micron length scales using environmental scanning electron microscopy. We examine a superhydrophobic surface on which a drop’s adhesion is governed by capillary bridges at the receding contact line. We measure the microscale receding contact angle of each bridge and show that the Gibbs criterion is satisfied at the microscale. We reveal a hitherto unknown self-similar depinning mechanism that shows how some hierarchical textures such as lotus leaves lead to reduced pinning, and counter-intuitively, how some lead to increased pinning. We develop a model to predict adhesion force and experimentally verify the model’s broad applicability on both synthetic and natural textured surfaces.National Science Foundation (U.S.) (CAREER Award 0952564)DuPont MIT AllianceNational Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Science Foundation (U.S.) (Award ECS-0335765

    Contact Angles and Hysteresis on Surfaces with Chemically Heterogeneous Islands

    No full text

    On the Sliding and Profile of a Liquid Droplet on a Rotating Disk(Thermal Engineering)

    No full text
    • …
    corecore