614 research outputs found

    Comment on "Quantum dense key distribution"

    Full text link
    In this Comment we question the security of recently proposed by Degiovanni et al. [Phys. Rev. A 69 (2004) 032310] scheme of quantum dense key distribution

    Eavesdropping on the "ping-pong" quantum communication protocol

    Full text link
    The proposed eavesdropping scheme reveals that the quantum communication protocol recently presented by Bostrom and Felbinger [Phys. Rev. Lett. 89, 187902 (2002)] is not secure as far as quantum channel losses are taken into account

    Discrete Time Quantum Walk Approach to State Transfer

    Full text link
    We show that a quantum state transfer, previously studied as a continuous time process in networks of interacting spins, can be achieved within the model of discrete time quantum walks with position dependent coin. We argue that due to additional degrees of freedom, discrete time quantum walks allow to observe effects which cannot be observed in the corresponding continuous time case. First, we study a discrete time version of the engineered coupling protocol due to Christandl et. al. [Phys. Rev. Lett. 92, 187902 (2004)] and then discuss the general idea of conversion between continuous time quantum walks and discrete time quantum walks.Comment: 9 pages, 6 figures, comments welcom

    Towards symmetric scheme for superdense coding between multiparties

    Get PDF
    Recently Liu, Long, Tong and Li [Phys. Rev. A 65, 022304 (2002)] have proposed a scheme for superdense coding between multiparties. This scheme seems to be highly asymmetric in the sense that only one sender effectively exploits entanglement. We show that this scheme can be modified in order to allow more senders to benefit of the entanglement enhanced information transmission.Comment: 6 page

    Limit theorem for a time-dependent coined quantum walk on the line

    Full text link
    We study time-dependent discrete-time quantum walks on the one-dimensional lattice. We compute the limit distribution of a two-period quantum walk defined by two orthogonal matrices. For the symmetric case, the distribution is determined by one of two matrices. Moreover, limit theorems for two special cases are presented

    Linear optics implementation of general two-photon projective measurement

    Get PDF
    We will present a method of implementation of general projective measurement of two-photon polarization state with the use of linear optics elements only. The scheme presented succeeds with a probability of at least 1/16. For some specific measurements, (e.g. parity measurement) this probability reaches 1/4.Comment: 8 page

    The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment

    Get PDF
    Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7 neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by their elastic scattering on electrons in 100 tons of liquid scintillator. The neutrino event rate in the scintillator is expected to be low (~0.35 events per day per ton), and the signals will be at energies below 1.5 MeV, where background from natural radioactivity is prominent. Scintillation light produced by the recoil electrons is observed by an array of 2240 photomultiplier tubes. Because of the intrinsic radioactive contaminants in these PMTs, the liquid scintillator is shielded from them by a thick barrier of buffer fluid. A spherical vessel made of thin nylon film contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by a second nylon vessel in order to prevent inward diffusion of radon atoms. The radioactive background requirements for Borexino are challenging to meet, especially for the scintillator and these nylon vessels. Besides meeting requirements for low radioactivity, the nylon vessels must also satisfy requirements for mechanical, optical, and chemical properties. The present paper describes the research and development, construction, and installation of the nylon vessels for the Borexino experiment

    Exactly solvable model of quantum diffusion

    Get PDF
    We study the transport property of diffusion in a finite translationally invariant quantum subsystem described by a tight-binding Hamiltonian with a single energy band and interacting with its environment by a coupling in terms of correlation functions which are delta-correlated in space and time. For weak coupling, the time evolution of the subsystem density matrix is ruled by a quantum master equation of Lindblad type. Thanks to the invariance under spatial translations, we can apply the Bloch theorem to the subsystem density matrix and exactly diagonalize the time evolution superoperator to obtain the complete spectrum of its eigenvalues, which fully describe the relaxation to equilibrium. Above a critical coupling which is inversely proportional to the size of the subsystem, the spectrum at given wavenumber contains an isolated eigenvalue describing diffusion. The other eigenvalues rule the decay of the populations and quantum coherences with decay rates which are proportional to the intensity of the environmental noise. On the other hand, an analytical expression is obtained for the dispersion relation of diffusion. The diffusion coefficient is proportional to the square of the width of the energy band and inversely proportional to the intensity of the environmental noise because diffusion results from the perturbation of quantum tunneling by the environmental fluctuations in this model. Diffusion disappears below the critical coupling.Comment: Submitted to J. Stat. Phy

    A Two-Step Quantum Direct Communication Protocol Using Einstein-Podolsky-Rosen Pair Block

    Full text link
    A protocol for quantum secure direct communication using blocks of EPR pairs is proposed. A set of ordered NN EPR pairs is used as a data block for sending secret message directly. The ordered NN EPR set is divided into two particle sequences, a checking sequence and a message-coding sequence. After transmitting the checking sequence, the two parties of communication check eavesdropping by measuring a fraction of particles randomly chosen, with random choice of two sets of measuring bases. After insuring the security of the quantum channel, the sender, Alice encodes the secret message directly on the message-coding sequence and send them to Bob. By combining the checking and message-coding sequences together, Bob is able to read out the encoded messages directly. The scheme is secure because an eavesdropper cannot get both sequences simultaneously. We also discuss issues in a noisy channel.Comment: 8 pages and 2 figures. To appear in Phys Rev
    corecore