271 research outputs found
Non-stationary heat conduction in one-dimensional chains with conserved momentum
The Letter addresses the relationship between hyperbolic equations of heat
conduction and microscopic models of dielectrics. Effects of the non-stationary
heat conduction are investigated in two one-dimensional models with conserved
momentum: Fermi-Pasta-Ulam (FPU) chain and chain of rotators (CR). These models
belong to different universality classes with respect to stationary heat
conduction. Direct numeric simulations reveal in both models a crossover from
oscillatory decay of short-wave perturbations of the temperature field to
smooth diffusive decay of the long-wave perturbations. Such behavior is
inconsistent with parabolic Fourier equation of the heat conduction. The
crossover wavelength decreases with increase of average temperature in both
models. For the FPU model the lowest order hyperbolic Cattaneo-Vernotte
equation for the non-stationary heat conduction is not applicable, since no
unique relaxation time can be determined.Comment: 4 pages, 5 figure
Dispersion relations for the time-fractional Cattaneo-Maxwell heat equation
In this paper, after a brief review of the general theory of dispersive waves
in dissipative media, we present a complete discussion of the dispersion
relations for both the ordinary and the time-fractional Cattaneo-Maxwell heat
equations. Consequently, we provide a complete characterization of the group
and phase velocities for these two cases, together with some non-trivial
remarks on the nature of wave dispersion in fractional models.Comment: 18 pages, 7 figure
Nonlinear Breathing-like Localized Modes in C60 Nanocrystals
We study the dynamics of nanocrystals composed of C60 fullerene molecules. We
demonstrate that such structures can support long-lived strongly localized
nonlinear oscillatory modes, which resemble discrete breathers in simple
lattices. We reveal that at room temperatures the lifetime of such nonlinear
localized modes may exceed tens of picoseconds; this suggests that C60
nanoclusters should demonstrate anomalously slow thermal relaxation when the
temperature gradient decays in accord to a power law, thus violating the
Cattaneo-Vernotte law of thermal conductivity.Comment: 6 pages, 6 figure
PHYCOBILISOMES AND ISOLATED PHYCOBILIPROTEINS. EFFECT OF GLUTARDIALDEHYDE AND BENZOQUINONE ON FLUORESCENCE
The fluorescence of the biliproteins C-phycocyanin from Spirulina platensis, B-phycoerythrin
from Porphyridium cruentum and of isolated whole P. cruentum phycobilisomes is quenched in the
presence of glutardialdehyde (GA) or benzoquinone (BQ). The kinetics of fluorescence decrease thus
induced is biphasic. If GA is used as a quencher, the fluorescence can be recovered at 77 K. Contrary to
the GA-effect, only a minor recovery takes place with BQ at 77K, thus demonstrating a different
mechanism of action of GA and BQ on biliprotein
Tests of Transfer Reaction Determinations of Astrophysical S-Factors
The reaction has been used to determine
asymptotic normalization coefficients for transitions to the ground and first
excited states of . The coefficients provide the normalization for
the tails of the overlap functions for and allow us
to calculate the S-factors for at astrophysical
energies. The calculated S-factors are compared to measurements and found to be
in very good agreement. This provides the first test of this indirect method to
determine astrophysical direct capture rates using transfer reactions. In
addition, our results yield S(0) for capture to the ground and first excited
states in , without the uncertainty associated with extrapolation from
higher energies.Comment: 6 pages, 2 figure
Nonstationary heat conduction in one-dimensional models with substrate potential
The paper investigates non-stationary heat conduction in one-dimensional
models with substrate potential. In order to establish universal characteristic
properties of the process, we explore three different models ---
Frenkel-Kontorova (FK), phi4+ (+) and phi4- (). Direct numeric
simulations reveal in all these models a crossover from oscillatory decay of
short-wave perturbations of the temperature field to smooth diffusive decay of
the long-wave perturbations. Such behavior is inconsistent with parabolic
Fourier equation of the heat conduction and clearly demonstrates the necessity
of hyperbolic models. The crossover wavelength decreases with increase of
average temperature. The decay patterns of the temperature field almost do not
depend on the amplitude of the perturbations, so the use of linear evolution
equations for temperature field is justified. In all model investigated, the
relaxation of thermal perturbations is exponential -- contrary to linear chain,
where it follows a power law. However, the most popular lowest-order hyperbolic
generalization of the Fourier law, known as Cattaneo-Vernotte (CV) or telegraph
equation (TE) is not valid for description of the observed behavior of the
models with on-site potential. In part of the models a characteristic
relaxation times exhibit peculiar scaling with respect to the temperature
perturbation wavelength. Quite surprisingly, such behavior is similar to that
of well-known model with divergent heat conduction (Fermi-Pasta-Ulam chain) and
rather different from the model with normal heat conduction (chain of
rotators). Thus, the data on the non-stationary heat conduction in the systems
with on-site potential do not fit commonly accepted concept of universality
classes for heat conduction in one-dimensional models.Comment: 9 pages, 7 figures, corrected versio
Why hyperbolic theories of dissipation cannot be ignored: Comments on a paper by Kostadt and Liu
Contrary to what is asserted in a recent paper by Kostadt and Liu ("Causality
and stability of the relativistic diffusion equation"), experiments can tell
apart (and in fact do) hyperbolic theories from parabolic theories of
dissipation. It is stressed that the existence of a non--negligible relaxation
time does not imply for the system to be out of the hydrodynamic regime.Comment: 8 pages Latex, to appear in Phys.Rev.
Restoration of Overlap Functions and Spectroscopic Factors in Nuclei
An asymptotic restoration procedure is applied for analyzing bound--state
overlap functions, separation energies and single--nucleon spectroscopic
factors by means of a model one--body density matrix emerging from the Jastrow
correlation method in its lowest order approximation for and
nuclei . Comparison is made with available experimental data and mean--field
and natural orbital representation results.Comment: 5 pages, RevTeX style, to be published in Physical Review
- …