13,354 research outputs found

    Yang--Baxter symmetry in integrable models: new light from the Bethe Ansatz solution

    Full text link
    We show how any integrable 2D QFT enjoys the existence of infinitely many non--abelian {\it conserved} charges satisfying a Yang--Baxter symmetry algebra. These charges are generated by quantum monodromy operators and provide a representation of qq-deformed affine Lie algebras. We review and generalize the work of de Vega, Eichenherr and Maillet on the bootstrap construction of the quantum monodromy operators to the sine--Gordon (or massive Thirring) model, where such operators do not possess a classical analogue. Within the light--cone approach to the mT model, we explicitly compute the eigenvalues of the six--vertex alternating transfer matrix \tau(\l) on a generic physical state, through algebraic Bethe ansatz. In the thermodynamic limit \tau(\l) turns out to be a two--valued periodic function. One determination generates the local abelian charges, including energy and momentum, while the other yields the abelian subalgebra of the (non--local) YB algebra. In particular, the bootstrap results coincide with the ratio between the two determinations of the lattice transfer matrix.Comment: 30 page

    Mass Spectrum of Strings in Anti de Sitter Spacetime

    Get PDF
    We perform string quantization in anti de Sitter (AdS) spacetime. The string motion is stable, oscillatory in time with real frequencies ωn=n2+m2α2H2\omega_n= \sqrt{n^2+m^2\alpha'^2H^2} and the string size and energy are bounded. The string fluctuations around the center of mass are well behaved. We find the mass formula which is also well behaved in all regimes. There is an {\it infinite} number of states with arbitrarily high mass in AdS (in de Sitter (dS) there is a {\it finite} number of states only). The critical dimension at which the graviton appears is D=25,D=25, as in de Sitter space. A cosmological constant Λ0\Lambda\neq 0 (whatever its sign) introduces a {\it fine structure} effect (splitting of levels) in the mass spectrum at all states beyond the graviton. The high mass spectrum changes drastically with respect to flat Minkowski spacetime. For ΛΛN2,\Lambda\sim \mid\Lambda\mid N^2, {\it independent} of α,\alpha', and the level spacing {\it grows} with the eigenvalue of the number operator, N.N. The density of states ρ(m)\rho(m) grows like \mbox{Exp}[(m/\sqrt{\mid\Lambda\mid}\;)^{1/2}] (instead of \rho(m)\sim\mbox{Exp}[m\sqrt{\alpha'}] as in Minkowski space), thus {\it discarding} the existence of a critical string temperature. For the sake of completeness, we also study the quantum strings in the black string background, where strings behave, in many respects, as in the ordinary black hole backgrounds. The mass spectrum is equal to the mass spectrum in flat Minkowski space.Comment: 31 pages, Latex, DEMIRM-Paris-9404

    Renormalization Group Flow and Fragmentation in the Self-Gravitating Thermal Gas

    Get PDF
    The self-gravitating thermal gas (non-relativistic particles of mass m at temperature T) is exactly equivalent to a field theory with a single scalar field phi(x) and exponential self-interaction. We build up perturbation theory around a space dependent stationary point phi_0(r) in a finite size domain delta \leq r \leq R ,(delta << R), which is relevant for astrophysical applica- tions (interstellar medium,galaxy distributions).We compute the correlations of the gravitational potential (phi) and of the density and find that they scale; the latter scales as 1/r^2. A rich structure emerges in the two-point correl- tors from the phi fluctuations around phi_0(r). The n-point correlators are explicitly computed to the one-loop level.The relevant effective coupling turns out to be lambda=4 pi G m^2 / (T R). The renormalization group equations (RGE) for the n-point correlator are derived and the RG flow for the effective coupling lambda(tau) [tau = ln(R/delta), explicitly obtained.A novel dependence on tau emerges here.lambda(tau) vanishes each time tau approaches discrete values tau=tau_n = 2 pi n/sqrt7-0, n=0,1,2, ...Such RG infrared stable behavior [lambda(tau) decreasing with increasing tau] is here connected with low density self-similar fractal structures fitting one into another.For scales smaller than the points tau_n, ultraviolet unstable behaviour appears which we connect to Jeans' unstable behaviour, growing density and fragmentation. Remarkably, we get a hierarchy of scales and Jeans lengths following the geometric progression R_n=R_0 e^{2 pi n /sqrt7} = R_0 [10.749087...]^n . A hierarchy of this type is expected for non-spherical geometries,with a rate different from e^{2 n/sqrt7}.Comment: LaTex, 31 pages, 11 .ps figure

    String dynamics in cosmological and black hole backgrounds: The null string expansion

    Get PDF
    We study the classical dynamics of a bosonic string in the DD--dimensional flat Friedmann--Robertson--Walker and Schwarzschild backgrounds. We make a perturbative development in the string coordinates around a {\it null} string configuration; the background geometry is taken into account exactly. In the cosmological case we uncouple and solve the first order fluctuations; the string time evolution with the conformal gauge world-sheet τ\tau--coordinate is given by X0(σ,τ)=q(σ)τ11+2β+c2B0(σ,τ)+X^0(\sigma, \tau)=q(\sigma)\tau^{1\over1+2\beta}+c^2B^0(\sigma, \tau)+\cdots, B0(σ,τ)=kbk(σ)τkB^0(\sigma,\tau)=\sum_k b_k(\sigma)\tau^k where bk(σ)b_k(\sigma) are given by Eqs.\ (3.15), and β\beta is the exponent of the conformal factor in the Friedmann--Robertson--Walker metric, i.e. RηβR\sim\eta^\beta. The string proper size, at first order in the fluctuations, grows like the conformal factor R(η)R(\eta) and the string energy--momentum tensor corresponds to that of a null fluid. For a string in the black hole background, we study the planar case, but keep the dimensionality of the spacetime DD generic. In the null string expansion, the radial, azimuthal, and time coordinates (r,ϕ,t)(r,\phi,t) are r=nAn1(σ)(τ)2n/(D+1) ,r=\sum_n A^1_{n}(\sigma)(-\tau)^{2n/(D+1)}~, ϕ=nAn3(σ)(τ)(D5+2n)/(D+1) ,\phi=\sum_n A^3_{n}(\sigma)(-\tau)^{(D-5+2n)/(D+1)}~, and t=nAn0(σ)(τ)1+2n(D3)/(D+1) .t=\sum_n A^0_{n} (\sigma)(-\tau)^{1+2n(D-3)/(D+1)}~. The first terms of the series represent a {\it generic} approach to the Schwarzschild singularity at r=0r=0. First and higher order string perturbations contribute with higher powers of τ\tau. The integrated string energy-momentum tensor corresponds to that of a null fluid in D1D-1 dimensions. As the string approaches the r=0r=0 singularity its proper size grows indefinitely like (τ)(D3)/(D+1)\sim(-\tau)^{-(D-3)/(D+1)}. We end the paper giving three particular exact string solutions inside the black hole.Comment: 17 pages, REVTEX, no figure

    Strings in Cosmological and Black Hole Backgrounds: Ring Solutions

    Full text link
    The string equations of motion and constraints are solved for a ring shaped Ansatz in cosmological and black hole spacetimes. In FRW universes with arbitrary power behavior [R(X^0) = a\;|X^0|^{\a}\, ], the asymptotic form of the solution is found for both X00X^0 \to 0 and X0X^0 \to \infty and we plot the numerical solution for all times. Right after the big bang (X0=0X^0 = 0), the string energy decreasess as R(X0)1 R(X^0)^{-1} and the string size grows as R(X0) R(X^0) for 01 0 1 . Very soon [ X01 X^0 \sim 1 ] , the ring reaches its oscillatory regime with frequency equal to the winding and constant size and energy. This picture holds for all values of \a including string vacua (for which, asymptotically, \a = 1). In addition, an exact non-oscillatory ring solution is found. For black hole spacetimes (Schwarzschild, Reissner-Nordstr\oo m and stringy), we solve for ring strings moving towards the center. Depending on their initial conditions (essentially the oscillation phase), they are are absorbed or not by Schwarzschild black holes. The phenomenon of particle transmutation is explicitly observed (for rings not swallowed by the hole). An effective horizon is noticed for the rings. Exact and explicit ring solutions inside the horizon(s) are found. They may be interpreted as strings propagating between the different universes described by the full black hole manifold.Comment: Paris preprint PAR-LPTHE-93/43. Uses phyzzx. Includes figures. Text and figures compressed using uufile

    Elliptical beams

    Get PDF
    A very general beam solution of the paraxial wave equation in elliptic cylindrical coordinates is presented. We call such a field an elliptic beam (EB). The complex amplitude of the EB is described by either the generalized Ince functions or the Whittaker-Hill functions and is characterized by four parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the EB are the standard, elegant, and generalized Ince-Gauss beams, Mathieu-Gauss beams, among others
    corecore