22 research outputs found

    Fine Scale Analysis of Crossover and Non-Crossover and Detection of Recombination Sequence Motifs in the Honeybee (Apis mellifera)

    Get PDF
    BACKGROUND: Meiotic exchanges are non-uniformly distributed across the genome of most studied organisms. This uneven distribution suggests that recombination is initiated by specific signals and/or regulations. Some of these signals were recently identified in humans and mice. However, it is unclear whether or not sequence signals are also involved in chromosomal recombination of insects. METHODOLOGY: We analyzed recombination frequencies in the honeybee, in which genome sequencing provided a large amount of SNPs spread over the entire set of chromosomes. As the genome sequences were obtained from a pool of haploid males, which were the progeny of a single queen, an oocyte method (study of recombination on haploid males that develop from unfertilized eggs and hence are the direct reflect of female gametes haplotypes) was developed to detect recombined pairs of SNP sites. Sequences were further compared between recombinant and non-recombinant fragments to detect recombination-specific motifs. CONCLUSIONS: Recombination events between adjacent SNP sites were detected at an average distance of 92 bp and revealed the existence of high rates of recombination events. This study also shows the presence of conversion without crossover (i. e. non-crossover) events, the number of which largely outnumbers that of crossover events. Furthermore the comparison of sequences that have undergone recombination with sequences that have not, led to the discovery of sequence motifs (CGCA, GCCGC, CCGCA), which may correspond to recombination signals

    Towards a semi-automatic functional annotation tool based on decision tree techniques

    No full text
    National audienceBackground: Due to the continuous improvements of high throughput technologies and experimental procedures, the number of sequenced genomes is increasing exponentially. Ultimately, the task of annotating these data relies on the expertise of biologists. The necessity for annotation to be supervised by human experts is the rate limiting step of the data analysis. To face the deluge of new genomic data, the need for automating, as much as possible, the annotation process becomes critical. Results: We consider annotation of a protein with terms of the functional hierarchy that has been used to annotate Bacillus subtilis and propose a set of rules that predict classes in terms of elements of the functional hierarchy, i.e., a class is a node or a leaf of the hierarchy tree. The rules are obtained through two decision-trees techniques: first-order decision-trees and multilabel attributevalue decision-trees, by using as training data the proteins from two lactic bacteria: Lactobacillus sakei and Lactobacillus bulgaricus. We tested the two methods, first independently, then in a combined approach, and evaluated the obtained results using hierarchical evaluation measures. Results obtained for the two approaches on both genomes are comparable and show a good precision together with a high prediction rate. Using combined approaches increases the recall and the prediction rate. Conclusion: The combination of the two approaches is very encouraging and we will further refine these combinations in order to get rules even more useful for the annotators. This first study is a crucial step towards designing a semi-automatic functional annotation tool

    Towards a semi-automatic functional annotation tool based on decision tree techniques

    No full text
    National audienceBackground: Due to the continuous improvements of high throughput technologies and experimental procedures, the number of sequenced genomes is increasing exponentially. Ultimately, the task of annotating these data relies on the expertise of biologists. The necessity for annotation to be supervised by human experts is the rate limiting step of the data analysis. To face the deluge of new genomic data, the need for automating, as much as possible, the annotation process becomes critical. Results: We consider annotation of a protein with terms of the functional hierarchy that has been used to annotate Bacillus subtilis and propose a set of rules that predict classes in terms of elements of the functional hierarchy, i.e., a class is a node or a leaf of the hierarchy tree. The rules are obtained through two decision-trees techniques: first-order decision-trees and multilabel attributevalue decision-trees, by using as training data the proteins from two lactic bacteria: Lactobacillus sakei and Lactobacillus bulgaricus. We tested the two methods, first independently, then in a combined approach, and evaluated the obtained results using hierarchical evaluation measures. Results obtained for the two approaches on both genomes are comparable and show a good precision together with a high prediction rate. Using combined approaches increases the recall and the prediction rate. Conclusion: The combination of the two approaches is very encouraging and we will further refine these combinations in order to get rules even more useful for the annotators. This first study is a crucial step towards designing a semi-automatic functional annotation tool

    Genomic exploration of the hemiascomycetous yeasts: 21. Comparative functional classification of genes.

    Get PDF
    We explored the biological diversity of hemiascomycetous yeasts using a set of 22000 newly identified genes in 13 species through BLASTX searches. Genes without clear homologue in Saccharomyces cerevisiae appeared to be conserved in several species, suggesting that they were recently lost by S. cerevisiae. They often identified well-known species-specific traits. Cases of gene acquisition through horizontal transfer appeared to occur very rarely if at all. All identified genes were ascribed to functional classes. Functional classes were differently represented among species. Species classification by functional clustering roughly paralleled rDNA phylogeny. Unequal distribution of rapidly evolving, ascomycete-specific, genes among species and functions was shown to contribute strongly to this clustering. A few cases of gene family amplification were documented, but no general correlation could be observed between functional differentiation of yeast species and variations of gene family sizes. Yeast biological diversity seems thus to result from limited species-specific gene losses or duplications, and for a large part from rapid evolution of genes and regulatory factors dedicated to specific functions

    Genomic exploration of the hemiascomycetous yeasts: 4. The genome of Saccharomyces cerevisiae revisited.

    No full text
    Since its completion more than 4 years ago, the sequence of Saccharomyces cerevisiae has been extensively used and studied. The original sequence has received a few corrections, and the identification of genes has been completed, thanks in particular to transcriptome analyses and to specialized studies on introns, tRNA genes, transposons or multigene families. In order to undertake the extensive comparative sequence analysis of this program, we have entirely revisited the S. cerevisiae sequence using the same criteria for all 16 chromosomes and taking into account publicly available annotations for genes and elements that cannot be predicted. Comparison with the other yeast species of this program indicates the existence of 50 novel genes in segments previously considered as 'intergenic' and suggests extensions for 26 of the previously annotated genes.comparative studyjournal article2000 Dec 22importe

    Genomic exploration of the hemiascomycetous yeasts: 18. Comparative analysis of chromosome maps and synteny with Saccharomyces cerevisiae.

    No full text
    We have analyzed the evolution of chromosome maps of Hemiascomycetes by comparing gene order and orientation of the 13 yeast species partially sequenced in this program with the genome map of Saccharomyces cerevisiae. From the analysis of nearly 8000 situations in which two distinct genes having homologs in S. cerevisiae could be identified on the sequenced inserts of another yeast species, we have quantified the loss of synteny, the frequency of single gene deletion and the occurrence of gene inversion. Traces of ancestral duplications in the genome of S. cerevisiae could be identified from the comparison with the other species that do not entirely coincide with those identified from the comparison of S. cerevisiae with itself. From such duplications and from the correlation observed between gene inversion and loss of synteny, a model is proposed for the molecular evolution of Hemiascomycetes. This model, which can possibly be extended to other eukaryotes, is based on the reiteration of events of duplication of chromosome segments, creating transient merodiploids that are subsequently resolved by single gene deletion events.comparative studyjournal article2000 Dec 22importe

    Genomic exploration of the hemiascomycetous yeasts: 19. Ascomycetes-specific genes.

    No full text
    Comparisons of the 6213 predicted Saccharomyces cerevisiae open reading frame (ORF) products with sequences from organisms of other biological phyla differentiate genes commonly conserved in evolution from 'maverick' genes which have no homologue in phyla other than the Ascomycetes. We show that a majority of the 'maverick' genes have homologues among other yeast species and thus define a set of 1892 genes that, from sequence comparisons, appear 'Ascomycetes-specific'. We estimate, retrospectively, that the S. cerevisiae genome contains 5651 actual protein-coding genes, 50 of which were identified for the first time in this work, and that the present public databases contain 612 predicted ORFs that are not real genes. Interestingly, the sequences of the 'Ascomycetes-specific' genes tend to diverge more rapidly in evolution than that of other genes. Half of the 'Ascomycetes-specific' genes are functionally characterized in S. cerevisiae, and a few functional categories are over-represented in them.comparative studyjournal article2000 Dec 22importe

    Genomic exploration of the hemiascomycetous yeasts: 20. Evolution of gene redundancy compared to Saccharomyces cerevisiae.

    No full text
    We have evaluated the degree of gene redundancy in the nuclear genomes of 13 hemiascomycetous yeast species. Saccharomyces cerevisiae singletons and gene families appear generally conserved in these species as singletons and families of similar size, respectively. Variations of the number of homologues with respect to that expected affect from 7 to less than 24% of each genome. Since S. cerevisiae homologues represent the majority of the genes identified in the genomes studied, the overall degree of gene redundancy seems conserved across all species. This is best explained by a dynamic equilibrium resulting from numerous events of gene duplication and deletion rather than by a massive duplication event occurring in some lineages and not in others.comparative studyjournal article2000 Dec 22importe
    corecore