18 research outputs found

    Modulation of diffusion with polarized lasers

    No full text
    Laser diffusion is generally used to modify the metallurgical composition at the surface of materials for improving the mechanical properties. Platinum has been diffused into titanium and tantalum sheets in this study, and the concentrations of Pt in the substrates are determined. The concentration of Pt is higher at lower scanning speeds due to higher surface temperature and longer diffusion time than in the case of higher scanning speeds. Additionally, the samples treated with a linearly polarized laser beam exhibit slightly higher concentration of Pt. The enhanced diffusion in the case of linearly polarized laser treatment can be attributed to controlled excitation of the local vibration modes of the atoms in the substrate. The reflectivity of the samples are also measured at the wavelength of 1,064 nm and compared with theoretical results. © 2014 Springer-Verlag Berlin Heidelberg

    Creating pure nanostructures from electron-beam-induced deposition using purification techniques: A technology perspective

    No full text
    The creation of functional nanostructures by electron-beam-induced deposition (EBID) is becoming more widespread. The benefits of the technology include fast ‘point-and-shoot’ creation of three-dimensional nanostructures at predefined locations directly within a scanning electron microscope. One significant drawback to date has been the low purity level of the deposition. This has two independent causes: (1) partial or incomplete decomposition of the precursor molecule and (2) contamination from the residual chamber gas. This frequently limits the functionality of the structure, hence it is desirable to improve the decomposition and prevent the inclusion of contaminants. In this contribution we review and compare for the first time all the techniques specifically aimed at purifying the as-deposited impure EBID structures. Despite incomplete and scattered data, we observe some general trends: application of heat (during or after deposition) is usually beneficial to some extent; working in a favorable residual gas (ultra-high vacuum set-ups or plasma cleaning the chamber) is highly recommended; gas mixing approaches are extremely variable and not always reproducible between research groups; and carbon-free precursors are promising but tend to result in oxygen being the contaminant species rather than carbon. Finally we highlight a few novel approaches.Imaging Science and TechnologyApplied Science
    corecore